HDOJ 1159 Common Subsequence【模板题】

本文介绍了一个经典的计算机科学问题——最长公共子序列问题,并提供了一段完整的C++代码实现。该问题要求找出两个字符串之间的最长公共子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 34223    Accepted Submission(s): 15602


Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
 

Sample Input
  
abcfbc abfcab programming contest abcd mnp
 

Sample Output
  
4 2 0
 

Source
 

Recommend
Ignatius
 

LCS模板题,下面贴上模板。

只要理解LCS,然后这题就是个模板题,没有难度。


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char ch1[1111],ch2[1111];
int dp[1111][1111];
int main()
{
	int i,j;
	while(~scanf("%s%s",ch1,ch2))
	{
		memset(dp,0,sizeof(dp));
		int l1=strlen(ch1);
		int l2=strlen(ch2);	
		for(i=1;i<=l1;i++)
		{
			for(j=1;j<=l2;j++)
			{
				if(ch1[i-1]==ch2[j-1])
					dp[i][j]=dp[i-1][j-1]+1;//相等的话+1
				else
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);//不相等选之前状态下最长的那个
			}
		}
		printf("%d\n",dp[l1][l2]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值