1. 字符设备结构体
内核中所有已分配的字符设备编号都记录在一个名为 chrdevs 散列表里。该散列表中的每一个元素是一个 char_device_struct 结构,它的定义如下:
static struct char_device_struct {
struct char_device_struct *next; // 指向散列冲突链表中的下一个元素的指针
unsigned int major; // 主设备号
unsigned int baseminor; // 起始次设备号
int minorct; // 设备编号的范围大小
char name[64]; // 处理该设备编号范围内的设备驱动的名称
struct file_operations *fops; // 没有使用
struct cdev *cdev; // 指向字符设备驱动程序描述符的指针
} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];
注意,内核并不是为每一个字符设备定义一个 char_device_struct 结构,而是为一组(主设备号相同的设备)对应同一个字符设备驱动的设备编号范围定义一个 char_device_struct 结构。chrdevs 散列表的大小是 255,散列算法是把每组字符设备编号范围的主设备号以 255 取模插入相应的散列桶中。同一个散列桶中的字符设备编号范围是按起始次设备号递增排序的。
2. 字符设备的注册
内核提供了三个函数来注册一组字符设备编号,这三个函数分别是 register_chrdev_region()、alloc_chrdev_region() 和 register_chrdev()。这三个函数都会调用一个共用的 __register_chrdev_region() 函数来注册一组设备编号范围(即一个 char_device_struct 结构)。
register_chrdev_region(dev_t first,unsigned int count,char *name)
First :要分配的设备编号范围的初始值(次设备号常设为0);
Count:连续编号范围.
Name:编号相关联的设备名称. (/proc/devices);
动态分配:
Int alloc_chrdev_region(dev_t *dev,unsigned int firstminor,unsigned int count,char *name);
Firstminor : 通常为0;
*dev:存放返回的设备号;
释放:
Void unregist_chrdev_region(dev_t first,unsigned int count);
调用Documentation/devices.txt中能够找到已分配的设备号.
所以下面先来看一下 __register_chrdev_region() 函数的实现代码。
static struct char_device_struct * __register_chrdev_region(unsigned int major, unsigned int baseminor, int minorct, const char *name){
struct char_device_struct *cd, **cp;
int ret = 0;
int i;
cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
if (cd == NULL)
return ERR_PTR(-ENOMEM);
mutex_lock(&chrdevs_lock);
if (major == 0) {
for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--)
if (chrdevs[i] == NULL)
break;
if (i == 0) {
ret = -EBUSY;
goto out;
}
major = i;
ret = major;
}
cd->major = major;
cd->baseminor = baseminor;
cd->minorct = minorct;
strncpy(cd->name,name, 64);
i = major_to_index(major);
for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
if ((*cp)->major > major ||
((*cp)->major == major && ( ((*cp)->baseminor >= baseminor) || ((*cp)->baseminor + (*cp)->minorct > baseminor)) ))
break;
/* Check for overlapping minor ranges. */
if (*cp && (*cp)->major == major) {
int old_min = (*cp)->baseminor;
int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
int new_min = baseminor;
int new_max = baseminor + minorct - 1;
/* New driver overlaps from the left. */
if (new_max >= old_min && new_max <= old_max) {
ret = -EBUSY;
goto out;
}
/* New driver overlaps from the right. */
if (new_min <= old_max && new_min >= old_min) {
ret = -EBUSY;
goto out;
}
}
cd->next = *cp;
*cp = cd;
mutex_unlock(&chrdevs_lock);
return cd;
out:
mutex_unlock(&chrdevs_lock);
kfree(cd);
return ERR_PTR(ret);
}
函数 __register_chrdev_region() 主要执行以下步骤:
1. 分配一个新的 char_device_struct 结构,并用 0 填充。
2. 如果申请的设备编号范围的主设备号为 0,那么表示设备驱动程序请求动态分配一个主设备号。动态分配主设备号的原则是从散列表的最后一个桶向前寻找,那个桶是空的,主设备号就是相应散列桶的序号。所以动态分配的主设备号总是小于 256,如果每个桶都有字符设备编号了,那动态分配就会失败。
3. 根据参数设置 char_device_struct 结构中的初始设备号,范围大小及设备驱动名称。
4. 计算出主设备号所对应的散列桶,为新的 char_device_struct 结构寻找正确的位置。同时,如果设备编号范围有重复的话,则出错返回。
5. 将新的 char_device_struct 结构插入散列表中,并返回 char_device_struct 结构的地址。
分析完 __register_chrdev_region() 后,我们来一个个看那三个注册函数。
register_chrdev_region()
int register_chrdev_region(dev_t from, unsigned count, const char *name){
struct char_device_struct *cd;
dev_t to = from + count;
dev_t n, next;
for (n = from; n < to; n = next) {
next = MKDEV(MAJOR(n)+1, 0);
if (next > to)
next = to;
cd = __register_chrdev_region(MAJOR(n), MINOR(n), next - n, name);
if (IS_ERR(cd))
goto fail;
}
return 0;
fail:
to = n;
for (n = from; n < to; n = next) {
next = MKDEV(MAJOR(n)+1, 0);
kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
}
return PTR_ERR(cd);
}
register_chrdev_region() 函数用于分配指定的设备编号范围。如果申请的设备编号范围跨越了主设备号,它会把分配范围内的编号按主设备号分割成较小的子范围,并在每个子范围上调用 __register_chrdev_region() 。如果其中有一次分配失败的话,那会把之前成功分配的都全部退回。
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)
{
struct char_device_struct *cd;
cd = __register_chrdev_region(0, baseminor, count, name);
if (IS_ERR(cd))
return PTR_ERR(cd);
*dev = MKDEV(cd->major, cd->baseminor);
return 0;
}
alloc_chrdev_region() 函数用于动态申请设备编号范围,这个函数好像并没有检查范围过大的情况,不过动态分配总是找个空的散列桶,所以问题也不大。通过指针参数返回实际获得的起始设备编号。
register_chrdev
{
struct char_device_struct *cd;
struct cdev *cdev;
char *s;
int err = -ENOMEM;
cd = __register_chrdev_region(major, 0, 256, name);
if (IS_ERR(cd))
return PTR_ERR(cd);
cdev = cdev_alloc();
if (!cdev)
goto out2;
cdev->owner = fops->owner;
cdev->ops = fops;
kobject_set_name(&cdev->kobj, "%s", name);
for (s = strchr(kobject_name(&cdev->kobj),'/'); s; s = strchr(s, '/'))
*s = '!';
err = cdev_add(cdev, MKDEV(cd->major, 0), 256);
if (err)
goto out;
cd->cdev = cdev;
return major ? 0 : cd->major;
out:
kobject_put(&cdev->kobj);
out2:
kfree(__unregister_chrdev_region(cd->major, 0, 256));
return err;
}
最后一个 register_chrdev() 是一个老式分配设备编号范围的函数。它分配一个单独主设备号和 0 ~ 255 的次设备号范围。如果申请的主设备号为 0 则动态分配一个。该函数还需传入一个 file_operations 结构的指针,函数内部自动分配了一个新的 cdev 结构。
和注册分配字符设备编号范围类似,内核提供了两个注销字符设备编号范围的函数,分别是 unregister_chrdev_region() 和 unregister_chrdev() 。它们都调用了 __unregister_chrdev_region() 函数。由于比较简单,就不加说明了,只把代码贴出来。
static struct char_device_struct * __unregister_chrdev_region(unsigned major, unsigned baseminor, int minorct)
{
struct char_device_struct *cd = NULL, **cp;
int i = major_to_index(major);
mutex_lock(&chrdevs_lock);
for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
if ((*cp)->major == major &&
(*cp)->baseminor == baseminor &&
(*cp)->minorct == minorct)
break;
if (*cp) {
cd = *cp;
*cp = cd->next;
}
mutex_unlock(&chrdevs_lock);
return cd;
}
void unregister_chrdev_region(dev_t from, unsigned count)
{
dev_t to = from + count;
dev_t n, next;
for (n = from; n < to; n = next) {
next = MKDEV(MAJOR(n)+1, 0);
if (next > to)
next = to;
kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
}
}
void unregister_chrdev(unsigned int major, const char *name)
{
struct char_device_struct *cd;
cd = __unregister_chrdev_region(major, 0, 256);
if (cd && cd->cdev)
cdev_del(cd->cdev);
kfree(cd);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include<linux/module.h>
#include<linux/kernel.h>
#include<linux/cdev.h>
#include<linux/fs.h>
#include<linux/kdev_t.h>
#include<linux/types.h>
#include<linux/uaccess.h>
#include<linux/string.h>
struct cdev chrdev;
unsigned int TestMajor=0;
unsigned int TestMinor=0;
dev_t dev_no;
int ret;
int testopen(struct inode *inode,struct file *file)
{
printk("cdev init\n");
return 0;
}
ssize_t testwrite(struct file *file, const char __user *usr, size_t len, loff_t *off)
{
char buf[12];
copy_from_user(buf,usr,strlen(usr));
printk("%s\n",buf);
}
ssize_t testread(struct file *file, char __user *usr, size_t len, loff_t *off)
{
char *buf = "hello,user!";
copy_to_user(usr,buf,20);
}
int testrelease(struct inode *inode, struct file *file)
{
printk("close\n");
return 0;
}
struct file_operations fops=
{
.owner=THIS_MODULE,
.open = testopen,
.write = testwrite,
.read = testread,
.release = testrelease,
};
static int __init test_init(void)
{
dev_no = MKDEV(TestMajor,TestMinor);
if(dev_no>0)
{
ret = register_chrdev_region(dev_no,1,"chrdev_test");
}
else
{
alloc_chrdev_region(&dev_no,0,1,"chrdev_test");
}
if(ret<0)
{
return ret;
}
cdev_init(&chrdev,&fops);
chrdev.owner=THIS_MODULE;
cdev_add(&chrdev,dev_no,1);
return 0;
}
static int __exit test_exit(void)
{
unregister_chrdev_region(dev_no,1);
cdev_del(&chrdev);
return 0;
}
module_init(test_init);
module_exit(test_exit);
MODULE_AUTHOR("FENG");
MODULE_DESCRIPTION("the first module of char drivers");
MODULE_LICENSE("GPL");
MODULE_VERSION("V1.0");