Captioning Images with Diverse Objects

提出一种新的视觉语义图片标注模型——新颖对象标注器(NOC),该模型能够描述大量未在现有图片文本数据集中出现的对象类别。通过利用外部数据源及分布语义嵌入,模型能在未见过的数据集上泛化并描述新颖的对象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Captioning Images with Diverse Objects

Recent captioning models are limited in their ability to scale and describe concepts unseen in paired image-text corpora. We propose the Novel Object Captioner (NOC), a deep visual semantic captioning model that can describe a large number of object categories not present in existing image-caption datasets. Our model takes advantage of external sources -- labeled images from object recognition datasets, and semantic knowledge extracted from unannotated text. We propose minimizing a joint objective which can learn from these diverse data sources and leverage distributional semantic embeddings, enabling the model to generalize and describe novel objects outside of image-caption datasets. We demonstrate that our model exploits semantic information to generate captions for hundreds of object categories in the ImageNet object recognition dataset that are not observed in MSCOCO image-caption training data, as well as many categories that are observed very rarely. Both automatic evaluations and human judgements show that our model considerably outperforms prior work in being able to describe many more categories of objects.
Comments: CVPR 2017 Camera ready version. 17 pages (8 + 9 supplement), 12 figures, 8 tables. Includes project page this http URL
Subjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)
Cite as: arXiv:1606.07770 [cs.CV]
  (or arXiv:1606.07770v3 [cs.CV] for this version)

Submission history

From: Subhashini Venugopalan [ view email
[v1] Fri, 24 Jun 2016 17:53:45 GMT (1873kb,D)
[v2] Thu, 1 Dec 2016 20:54:17 GMT (8155kb,D)
[v3] Thu, 20 Jul 2017 18:06:27 GMT (9001kb,D)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值