Detecting Violence in Video using Subclasses

本文提出一种新的视频暴力行为检测方法,通过引入与暴力视觉相关的子类别来增强多模态特征融合的效果。该方法不仅提高了对暴力行为理解的精细度,还在MediaEval 2015数据集上取得了显著的效果提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Detecting Violence in Video using Subclasses

This paper attacks the challenging problem of violence detection in videos. Different from existing works focusing on combining multi-modal features, we go one step further by adding and exploiting subclasses visually related to violence. We enrich the MediaEval 2015 violence dataset by \emph{manually} labeling violence videos with respect to the subclasses. Such fine-grained annotations not only help understand what have impeded previous efforts on learning to fuse the multi-modal features, but also enhance the generalization ability of the learned fusion to novel test data. The new subclass based solution, with AP of 0.303 and P100 of 0.55 on the MediaEval 2015 test set, outperforms several state-of-the-art alternatives. Notice that our solution does not require fine-grained annotations on the test set, so it can be directly applied on novel and fully unlabeled videos. Interestingly, our study shows that motion related features, though being essential part in previous systems, are dispensable.
Subjects: Multimedia (cs.MM); Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:1604.08088 [cs.MM]
  (or arXiv:1604.08088v1 [cs.MM] for this version)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值