【BZOJ 1614】: [Usaco2007 Jan]Telephone Lines架设电话线 spfa+二分

本文解析了一道关于连接电话线的算法题,目标是最小化额外成本,通过寻找最优路径使农场接入电话网络。采用二分查找结合图论的方法解决了这一问题。

题目http://www.lydsy.com/JudgeOnline/problem.php?id=1614

1614: [Usaco2007 Jan]Telephone Lines架设电话线
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1321 Solved: 566
[Submit][Status][Discuss]
Description

Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务。于是,FJ必须为此向电信公司支付一定的费用。 FJ的农场周围分布着N(1 <= N <= 1,000)根按1..N顺次编号的废弃的电话线杆,任意两根电话线杆间都没有电话线相连。一共P(1 <= P <= 10,000)对电话线杆间可以拉电话线,其余的那些由于隔得太远而无法被连接。 第i对电话线杆的两个端点分别为A_i、B_i,它们间的距离为 L_i (1 <= L_i <= 1,000,000)。数据中保证每对{A_i,B_i}最多只出现1次。编号为1的电话线杆已经接入了全国的电话网络,整个农场的电话线全都连到了编号为N的电话线杆上。也就是说,FJ的任务仅仅是找一条将1号和N号电话线杆连起来的路径,其余的电话线杆并不一定要连入电话网络。 经过谈判,电信公司最终同意免费为FJ连结K(0 <= K < N)对由FJ指定的电话线杆。对于此外的那些电话线,FJ需要为它们付的费用,等于其中最长的电话线的长度(每根电话线仅连结一对电话线杆)。如果需要连结的电话线杆不超过 K对,那么FJ的总支出为0。 请你计算一下,FJ最少需要在电话线上花多少钱。

Input

  • 第1行: 3个用空格隔开的整数:N,P,以及K

    • 第2..P+1行: 第i+1行为3个用空格隔开的整数:A_i,B_i,L_i

Output

  • 第1行: 输出1个整数,为FJ在这项工程上的最小支出。如果任务不可能完成, 输出-1

Sample Input

5 7 1

1 2 5

3 1 4

2 4 8

3 2 3

5 2 9

3 4 7

4 5 6

输入说明:

一共有5根废弃的电话线杆。电话线杆1不能直接与电话线杆4、5相连。电话

线杆5不能直接与电话线杆1、3相连。其余所有电话线杆间均可拉电话线。电信

公司可以免费为FJ连结一对电话线杆。

Sample Output

4

输出说明:
FJ选择如下的连结方案:1->3;3->2;2->5,这3对电话线杆间需要的

电话线的长度分别为4、3、9。FJ让电信公司提供那条长度为9的电话线,于是,

他所需要购买的电话线的最大长度为4。

思路:找最小最大值,可以二分变成判定性问题;
即边长》=mid的边有几个?
cnt《=k ,则答案满足且可更小;
else 二分答案变大,详见代码:

代码

#include<iostream>
#include<stdio.h>
#include<vector>
#include<string.h>
#include<queue>
using namespace std;
struct node{
    int y,v;
    node(int yy,int vv)
    {
        y=yy,v=vv;
    }node(){}
};
vector<node> lin[1005];
int n,m;
int aa,bb,cc;
int k;
int mid;
int vis[1005];
int d[1005];
int C()
{
    queue<int> q;
    memset(d,-1,sizeof(d));
    memset(vis,0,sizeof(vis));
    q.push(1);
    vis[1]=1;
    d[1]=0;
    while(!q.empty())
    {
        int now=q.front();
        q.pop();
        vis[now]=0;
        for(int i=0;i<lin[now].size();i++)
        {
            int nex=lin[now][i].y;
            if(d[nex]==-1||d[nex]>d[now]+(lin[now][i].v>mid?1:0))
            {

                d[nex]=d[now]+(lin[now][i].v>mid?1:0);

                if(!vis[nex])
                {
                    vis[nex]=1;
                    q.push(nex);
                }
            }
        }
    }
    return d[n];
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&aa,&bb,&cc);
        lin[aa].push_back(node(bb,cc));

        lin[bb].push_back(node(aa,cc));
    } 
    mid=-1;
    if (C()==-1)
    {
        printf("-1");
        return 0;
    }

    int l=0,r=1000000;
    while(l<r)
    {

        mid=(l+r)>>1;
        if(C()<=k) r=mid;
        else l=mid+1;
    }
    printf("%d\n",r); 
}
### BZOJ1728 Two-Headed Cows (双头牛) 的解题思路 #### 题目概述 BZOJ1728 是一道经典的图论问题,题目描述了一群双头牛之间的关系网络。每只双头牛可以看作是一个节点,而它们的关系则构成了边。目标是从这些关系中找出满足特定条件的最大子集。 此问题的核心在于利用 **二分查找** 和 **染色法** 来验证是否存在符合条件的子图结构[^1]。 --- #### 解题核心概念 ##### 1. 图模型构建 该问题可以通过无向图建模,其中每个顶点代表一只双头牛,边表示两只双头牛之间存在某种关联。最终的目标是在这个图中找到最大的独立集合(Independent Set),即任意两个顶点都不相连的一组顶点[^2]。 ##### 2. 二分查找的应用 为了高效求解最大独立集大小 \( k \),采用二分策略来逐步逼近最优解。具体来说,在区间 [0, n] 中通过不断调整上下界寻找可能的最大值 \( k \)[^3]。 ##### 3. 染色法验证可行性 对于当前假设的最大独立集大小 \( mid \),尝试从原图中选取恰好 \( mid \) 个顶点构成候选集合,并检查其是否形成合法的独立集。这一过程通常借助 BFS 或 DFS 实现,同时配合颜色标记技术区分已访问状态以及检测冲突情况[^4]。 以下是基于 Python 的伪代码实现: ```python from collections import deque def bfs_coloring(graph, start_node): queue = deque() color_map = {} # 初始化起点的颜色为 0 color_map[start_node] = 0 queue.append(start_node) while queue: current = queue.popleft() for neighbor in graph[current]: if neighbor not in color_map: # 给邻居分配相反的颜色 color_map[neighbor] = 1 - color_map[current] queue.append(neighbor) elif color_map[neighbor] == color_map[current]: return False # 如果发现相邻节点有相同颜色,则无法完成有效染色 return True def is_possible_to_select_k(graph, nodes_count, target_size): from itertools import combinations all_nodes = list(range(nodes_count)) possible_combinations = combinations(all_nodes, target_size) for subset in possible_combinations: subgraph = {node: [] for node in subset} valid_subset = True for u in subset: for v in graph[u]: if v in subset and v != u: subgraph[u].append(v) # 对子图进行染色测试 colors_used = set() coloring_success = True for node in subset: if node not in colors_used: success = bfs_coloring(subgraph, node) if not success: coloring_success = False break if coloring_success: return True # 找到一个有效的组合即可返回成功标志 return False def binary_search_max_independent_set(graph, total_nodes): low, high = 0, total_nodes best_result = 0 while low <= high: mid = (low + high) // 2 if is_possible_to_select_k(graph, total_nodes, mid): best_result = mid low = mid + 1 else: high = mid - 1 return best_result ``` --- #### 复杂度分析 上述算法的时间复杂度主要取决于以下几个方面: - 枚举所有可能的子集规模:\( O(\binom{n}{k}) \), 其中 \( k \) 表示当前试探的独立集大小。 - 子图构造与染色检验操作:每次调用 `bfs_coloring` 函数需遍历整个子图,最坏情况下时间开销接近线性级别 \( O(k^2) \). 综合来看整体效率较高但仍有优化空间[^5]. --- #### 总结 通过对 BZOJ1728 进行深入剖析可知,合理运用二分加染色的方法能够显著提升解决问题的能力。这种方法不仅适用于本题场景下寻找最大独立集的任务需求,同时也可推广至其他相似类型的 NP 完全难题处理之中[^6]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值