融合创新:CNN+LSTM在深度学习中的高效应用,助力科研发表高影响因子文章!

2024深度学习发论文&模型涨点之——CNN+LSTM

结合CNN(卷积神经网络)和LSTM(长短期记忆网络)是一种常见的深度学习模型组合,广泛应用于各种任务,特别是时间序列预测和序列数据处理。

CNN+LSTM是一种深度学习模型,它融合了CNN在图像和序列数据特征提取方面的优势以及LSTM在处理时间序列数据方面的能力。这种结合模型在多个领域都有应用,包括但不限于股票价格预测、手语识别、网络入侵检测、光伏发电预测和降水估计等。

如果有同学想发表相关论文,小编整理了一些CNN+LSTM【论文】合集,以下放出部分,全部论文PDF版,需要的同学公人人人号【AI智界先锋】自取

论文精选

论文1:

A CNN-LSTM-BASED HYBRID DEEP LEARNING APPROACH TO DETECT SENTIMENT POLARITIES ON MONKEYPOX TWEETS

基于CNN-LSTM混合深度学习方法检测猴痘推文上的情感极性

方法

  • 混合CNN和LSTM架构:研究中提出了一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合模型,用于分析Twitter上的猴痘相关推文。

  • 情感极性分类:考虑了用户推文的三种可能情感极性:积极、消极和中立,并构建模型进行分类。

  • 深度学习模型准确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值