Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.put(4, 4); // evicts key 1 cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4
完成一个添加、查找的过程。难点在于有限定长度,如果超了需要删除最久没用过的键值对。(有点类似于内存占用算法)
用collection.OrderedDict()真是很方便。https://www.cnblogs.com/zhenwei66/p/6596248.html
即有顺序,又能根据key进行pop(key),又能根据位置popitem(i)。
注意get的时候相当于调用了,所以pop出来重新加到字典尾部。也可以用self.dic.move_to_end(key)来执行,很方便。
class LRUCache:
def __init__(self, capacity: int):
self.maxl=capacity
self.dic = collections.OrderedDict()
def get(self, key: int) -> int:
if key in self.dic.keys():
temp=self.dic.pop(key)
self.dic[key]=temp
return temp
return -1
def put(self, key: int, value: int) -> None:
if key in self.dic.keys():
self.dic.pop(key)
self.dic[key]=value
if len(self.dic)>self.maxl:
self.dic.popitem(0)

本文详细介绍了如何使用Python的collections.OrderedDict实现一个高效、遵循最近最少使用(LRU)原则的缓存数据结构。该数据结构支持get和put操作,并在达到容量限制时自动移除最久未使用的项,确保操作的时间复杂度为O(1)。
1218

被折叠的 条评论
为什么被折叠?



