Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1: 2 / \ 1 3 Input: [2,1,3] Output: true Example 2: 5 / \ 1 4 / \ 3 6 Input: [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.二叉搜索树按照树的中序遍历应该是升序排列的.
-
所以用中序遍历后排序与原结果进行比对.还要注意不能有重复数字出现.
class Solution(object):
def isValidBST(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
if root is None:return True
res = []
result = self.helper(root, res)
return sorted(result)==result and len(result)==len(set(result))
def helper(self, root, res):
if root is None:return root
if root:
self.helper(root.left, res)
res.append(root.val)
self.helper(root.right, res)
return res

本文探讨了如何判断一个二叉树是否为有效的二叉搜索树(BST)。通过定义BST的特性,即左子树节点小于根节点,右子树节点大于根节点,且左右子树也必须是BST,提出了一种解决方案。利用中序遍历二叉树的特性,若遍历结果为升序且无重复值,则该二叉树为有效的BST。
491

被折叠的 条评论
为什么被折叠?



