Qwen2-Audio系列学习笔记

模型介绍

GitHub - QwenLM/Qwen2-Audio: The official repo of Qwen2-Audio chat & pretrained large audio language model proposed by Alibaba Cloud.

https://arxiv.org/pdf/2407.10759

https://zhuanlan.zhihu.com/p/712987238

We introduce the latest progress of Qwen-Audio, a large-scale audio-language model called Qwen2-Audio, which is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. We introduce two distinct audio interaction modes:

  • voice chat: users can freely engage in voice interactions with Qwen2-Audio without text input;
  • audio analysis: users could provide audio and text instructions for analysis during the interaction;

We've released two models of the Qwen2-Audio series: Qwen2-Audio-7B and Qwen2-Audio-7B-Instruct.

根据 Qwen2-Audio 技术报告,它在语音聊天和音频分析之间实现了无缝切换,不需要明确的系统提示。这两种模式是联合训练的,用户可以自然地与模型交互,模型会根据输入(语音或文本)智能地理解用户的意图,并自动选择适合的模式。

  • 语音聊天模式:允许用户进行自由的语音对话,可以直接通过语音与模型互动并获取实时响应。
  • 音频分析模式:用户可以通过音频或文本输入,要求模型对音频内容进行分析,例如检测声音、对话或其他音频信息。

这种设计使得用户无需手动切换模式,模型会根据交互内容自动适应两种模式的需求,提供流畅的用户体验。

  • 2024.8.9 🎉 We released the checkpoints of both Qwen2-Audio-7B and Qwen2-Audio-7B-Instruct on ModelScope and Hugging Face.
  • 2024.7.15 🎉 We released the paper of Qwen2-Audio, introducing the relevant model structure, training methods, and model performance. Check our report for details!
  • 2023.11.30 🔥 We released the Qwen-Audio series.

预训练

训练策略

Model Architecture The training process of Qwen2-Audio is depicted in Figure 2, which contains an audio

encoder and a large language model. Given the paired data (a,x), where the a and x denote the audio

sequences and text sequences, the training objective is to maximize the next text token probability as

Pθ(xt|x<t,Encoderϕ(a)),(1) conditioning on audio representations and previous text sequences x<t, where θ and ϕ denote the trainable parameters of the LLM and audio encoder respectively.

Different from Qwen-Audio, the initialization of the audio encoder of Qwen2-Audio is based on the Whisper large-v3 model (Radford et al., 2023). To preprocess the audio data, we resamples it to a frequency of 16kHz and converts the raw waveform into 128-channel mel-spectrogram using a window size of 25ms and a hop size of 10ms. Additionally, a pooling layer with a stride of two is incorporated to reduce the length of the audio repr

### Qwen2-Audio 功能概述 Qwen2-Audio 是一款先进的多模态AI助手,专为处理和理解各类音频信号而设计[^2]。此模型经过大量多样化数据集的训练,在多个任务上表现出卓越性能,如语音识别、语音翻译、情感分析以及声音分类。 对于希望深入了解或利用该工具的功能和服务来说,官方提供了详尽的产品文档来指导用户完成从安装到应用开发的过程。具体而言: - **功能特性** - 支持多轮对话交互模式; - 能够适应不同类型的音频环境; - 提供高质量的声音理解和转换能力; - **使用指南** 为了便于开发者快速入门并有效集成Qwen2-Audio至个人项目当中,建议按照如下路径查找所需资料: #### 安装准备 确保操作系统满足最低配置需求之后,可以通过Python包管理器`pip`安装ModelScope库,这是访问预训练模型所必需的第一步操作[^4]: ```bash pip install modelscope ``` 接着,依据实际应用场景和个人偏好选择合适的版本进行本地化部署。例如,要获取名为`qwen2-audio-7b-instruct`的大规模指令跟随模型实例,则需运行下列命令将其保存于指定目录下: ```bash cd .. modelscope download --model qwen/qwen2-audio-7b-instruct --local_dir './Qwen/Qwen2-Audio-7B-Instruct' ``` #### 测试验证 成功加载目标模型后,可以尝试调用API接口实现简单的WebUI展示效果,以此检验整个流程是否顺畅无误. 另外,针对那些想要进一步探索更多可能性的研究人员或者工程师们,还可以参考开源社区分享的实际案例——比如如何借助FastAPI框架搭建RESTful服务端点以便在线提供实时预测结果等功能扩展[^3]. 同时也鼓励大家积极参与讨论交流群组,共同推动技术进步与发展.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值