CodeForces - 940E Cashback [DP]

题意:给你长度为n的数列,一段序列的价值是,所有数的总和-最小的len/c的数的和,求如何分割数列,使得答案总和最小。

题解:我们可以考虑长度为2*c的一段序列,若分为c,c答案肯定比单独的2*c来的小,然后我们考虑长度为x的序列(c<=x<2*c),不管如何删除的都是一个数,并且x越小,对之后的答案的贡献越大,所以当x==c的时候答案是最优的,因此我们dp只转移i-c的位置。

AC代码:

#include<stdio.h>
#include<set>
#include<iostream>
using namespace std;
typedef long long ll;
multiset<ll>st;
ll a[100005];
ll dp[100005];
int main()
{
	ll n,c;
	scanf("%lld%lld",&n,&c);
	for(ll i=1;i<=n;i++)
		scanf("%lld",&a[i]);
	ll sum=0;
	for(ll i=1;i<=n;i++)
	{
		st.insert(a[i]);
		sum+=a[i];
		if(i>c)st.erase(st.find(a[i-c])),sum-=a[i-c];
		ll last=max(i-c,0ll);
		dp[i]=dp[last]+sum;
		if(st.size()==c)dp[i]-=*st.begin();
		dp[i]=min(dp[i],dp[i-1]+a[i]);
	}
	printf("%lld\n",dp[n]);
}


引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.youkuaiyun.com/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值