思路参考Edelweiss大神写的《网络流建模汇总》
感觉自己写得还是比较挫
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<cctype>
#include<string>
#include<algorithm>
#include<iostream>
#include<ctime>
#include<map>
#include<set>
using namespace std;
#define MP(x,y) make_pair((x),(y))
#define PB(x) push_back(x)
typedef __int64 LL;
//typedef unsigned __int64 ULL;
/* ****************** */
const int INF=1000111222;
const double INFF=1e200;
const double eps=1e-8;
const int mod=1000000007;
const int NN=2005;
const int MM=10010;
/* ****************** */
int fa[NN],num[NN];
struct G
{
int v,cap,next;
}E[NN*1000*2];
int p[NN],T,temp_p[NN];
int qw[NN],d[NN];
int findfa(int x)
{
if(x==fa[x])return x;
return fa[x]=findfa(fa[x]);
}
void add(int u,int v,int f)
{
E[T].v=v;
E[T].cap=f;
E[T].next=p[u];
p[u]=T++;
E[T].v=u;
E[T].cap=0;
E[T].next=p[v];
p[v]=T++;
}
bool find_path(int st,int en,int n)
{
int i,u,v,head,tail;
for(i=0;i<=n;i++)
d[i]=-1;
head=tail=0;
d[st]=0;
qw[tail]=st;
while(head<=tail)
{
u=qw[head++];
for(i=p[u];i+1;i=E[i].next)
{
v=E[i].v;
if(d[v]==-1 && E[i].cap>0)
{
d[v]=d[u]+1;
qw[++tail]=v;
}
}
}
return (d[en]!=-1);
}
int dfs_flow(int u,int& en,int f)
{
if(u==en || f==0)
return f;
int flow=0,temp;
for(; temp_p[u]+1 ; temp_p[u]=E[ temp_p[u] ].next )
{
G& e=E[temp_p[u]];
if(d[u]+1==d[e.v])
{
temp=dfs_flow( e.v , en , min(f,e.cap) );
if(temp>0)
{
e.cap-=temp;
E[ temp_p[u]^1 ].cap+=temp;
flow+=temp;
f-=temp;
if(f==0)
break;
}
}
}
return flow;
}
int dinic(int st,int en,int n)
{
int i,ans=0;
while( find_path(st,en,n) )
{
for(i=0;i<=n;i++)
temp_p[i]=p[i];
ans+=dfs_flow(st,en,INF);
}
return ans;
}
int main()
{
int n,m,k,limit,x,i,t;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(p,-1,sizeof(p));
T=0;
for(i=1;i<=n+m;i++)
{
fa[i]=i;
num[i]=0;
}
for(i=1;i<=n;i++)
scanf("%d",&num[i]);
for(i=1;i<=m;i++)
{
t=0;
scanf("%d",&k);
while(k--)
{
scanf("%d",&x);
x=findfa(x);
if(x<=n)
{
t+=num[x];
num[x]=0;
fa[x]=n+i;
}
else
{
add(x,n+i,INF);
}
}
num[n+i]=t;
scanf("%d",&limit);
add(0,n+i,t);
add(n+i,n+m+1,limit);
}
x=dinic(0,n+m+1,n+m+1);
printf("%d\n",x);
}
return 0;
}