二分贪心 T

本文介绍了一个用于优化产品装箱过程的算法,旨在减少运输成本。该算法通过计算不同大小的产品如何最优地放入标准尺寸的大箱子中,从而实现最小化所需包裹数量的目标。

题目:

A factory produces products packed in square packets of the same height h and of the sizes 1*1, 2*2, 3*3, 4*4, 5*5, 6*6. These products are always delivered to customers in the square parcels of the same height h as the products have and of the size 6*6. Because of the expenses it is the interest of the factory as well as of the customer to minimize the number of parcels necessary to deliver the ordered products from the factory to the customer. A good program solving the problem of finding the minimal number of parcels necessary to deliver the given products according to an order would save a lot of money. You are asked to make such a program.

Input

The input file consists of several lines specifying orders. Each line specifies one order. Orders are described by six integers separated by one space representing successively the number of packets of individual size from the smallest size 1*1 to the biggest size 6*6. The end of the input file is indicated by the line containing six zeros.

Output

The output file contains one line for each line in the input file. This line contains the minimal number of parcels into which the order from the corresponding line of the input file can be packed. There is no line in the output file corresponding to the last ``null'' line of the input file.

Sample Input

0 0 4 0 0 1 
7 5 1 0 0 0 
0 0 0 0 0 0 

Sample Output

2 
1 
分析:
6*6,5*5,4*4每种这样的箱子占一个大箱子,4个3*3的箱子占一个大箱子,2*2的可以放在跟4*4放在一起,也可以跟3*3的放在一起,1*1的可以放在有空的任意地方
代码:
#include<iostream>
using namespace std;
int main()
{
    int i,as,t,a2,a1,a[7];
    while(1)
    {        as=t=0;
        for(i=1;i<7;as+=a[i],i++)
            cin>>a[i];
        if(as==0)
            break;
        t=a[5]+a[4]+a[6]+(a[3]+3)/4;
        if(a[3]%4)
        a2=(3-a[3]%4)*2+1+a[4]*5;
        else
        a2=a[4]*5;
        if(a[2]>a2)
        t+=(a[2]-a2+8)/9;
        a1=(t-a[6])*36-a[5]*25-a[4]*16-a[3]*9-a[2]*4;
        if(a[1]>a1)
            t+=(a[1]-a1+35)/36;
        cout<<t<<endl;
    }
}

源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
### 二分贪心算法结合使用的解决方案 在某些复杂问题中,可以将二分算法与贪心算法结合使用,以提高解决问题的效率和准确性。以下是关于如何结合这两种算法的一个示例。 #### 示例:分配任务问题 **问题描述**:有 $N$ 个任务需要分配给 $M$ 个人完成,每个人最多只能完成一个任务。每个任务有一个完成时间 $T_i$。目标是找到一种分配方式,使得所有任务完成的时间总和最小化。 **解决思路**: 1. **二分法的应用**:首先通过二分法确定一个可能的最大完成时间 $X$。假设每个人都不能超过这个最大完成时间 $X$。 2. **贪心法的应用**:对于固定的 $X$,使用贪心算法检查是否可以将所有任务分配给 $M$ 个人,并满足每个人的完成时间不超过 $X$。 **具体步骤**: - 使用二分法确定一个可能的最大完成时间 $X$ 的范围。初始时,设定左边界为任务中最短的完成时间,右边界为所有任务完成时间的总和。 - 对于每一个二分得到的中间值 $mid$,使用贪心算法判断是否可以在最大完成时间为 $mid$ 的条件下完成所有任务。 - 如果可以完成,则尝试更小的 $mid$;否则尝试更大的 $mid$。 #### 示例代码 以下是一个基于上述思路的 C++ 示例代码: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; bool canAssign(vector<int>& tasks, int mid, int m) { int count = 1; // 当前需要的人数 int timeSum = 0; // 当前人的累计时间 for (int i = 0; i < tasks.size(); ++i) { if (timeSum + tasks[i] > mid) { // 超过当前限制 count++; timeSum = tasks[i]; if (count > m) return false; // 需要的人数超过限制 } else { timeSum += tasks[i]; } } return true; } int findMinTime(vector<int>& tasks, int m) { sort(tasks.begin(), tasks.end()); // 排序任务 int left = tasks[0]; // 最小的任务时间 int right = accumulate(tasks.begin(), tasks.end(), 0); // 所有任务时间总和 int result = right; while (left <= right) { int mid = (left + right) / 2; if (canAssign(tasks, mid, m)) { result = mid; right = mid - 1; // 尝试更小的值 } else { left = mid + 1; // 尝试更大的值 } } return result; } int main() { vector<int> tasks = {3, 5, 7, 10}; // 每个任务的完成时间 int m = 2; // 可用的人数 cout << "Minimum total time: " << findMinTime(tasks, m) << endl; return 0; } ``` #### 解释 - 在上述代码中,`canAssign` 函数用于检查是否可以在最大完成时间为 `mid` 的条件下完成所有任务[^1]。 - `findMinTime` 函数通过二分查找确定最小的总完成时间[^2]。 - 主函数中定义了任务列表和可用人数,并输出最小的总完成时间[^3]。 ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值