Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 20499 | Accepted: 9293 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weightWi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
Source
f[v]=max(f[v],f[v-a[i].w]+a[i].d);
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m;
int f[15000];
struct thing
{
int w;
int d;
}a[5000];
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].w,&a[i].d);
f[i]=0;
}
for(int i=1;i<=n;i++)
{
for(int v=m;v>=a[i].w;v--)
{
f[v]=max(f[v],f[v-a[i].w]+a[i].d);
}
}
//for(int i=1;i<=m;i++)printf("%d\n",f[i]);
printf("%d\n",f[m]);
return 0;
}