ZOJ Problem Set - 1242

本文介绍了一种利用碳-14衰变原理进行考古定年的算法实现。通过测量样本中残留的放射性碳-14数量,结合其衰变速率与生物体中原始比例的关系,该算法能估算出样本的大致年代。适用于1克碳样本内每小时405次衰变对应约5730年的场景。
Carbon Dating

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Until the second half of the 20th century, determining the actual age of an archaeological find had been more or less a matter of educated guessing. Comparing finds to previous, already dated, ones and evaluation of the surroundings of a find were the best available techniques.

But nowadays, there is a much more reliable method: carbon dating. Carbon dating works as follows: Naturally occurring carbon is a mixture of stable isotope (mostly 12C) and the unstable, radioactive, isotope 14C. The ratio between the two is almost constant in living organisms: 14C slowly decays, but at the same time, the radiation of the sum produces the same amount in the upper atmosphere, which is taken in by the organisms.

But when, for example, a tree is felled and made to wood, it does not receive any new 14C, and the amount present in the wood becomes less and less due to radioactive decay. In this problem, you are to write a program that uses information about the amount of remaining 14C to determine the approximate age of sample. The following facts must be used:

The amount of 14C present in a sample halves every 5730 years (this is called the half-life of 14C).

The rate of decay (measured in decays per hour per gram of carbon) is proportional to the amount of 14C left in the sample.

In living organisms (age zero), there are 810 decays per hour per gram of carbon.

So, for example, if we measure in a sample of one gram of carbon 405 decays per hour, we know that it is approximately 5730 years old.

Input

The input contains the measurements taken of several samples we want to date. Every line contains two positive integers, w and d. w is the amount of carbon in the sample, measured in grams, and d is the number of decays measured over one hour.

The input is terminated by a test case starting with w = d = 0.


Output

For each sample description in the input, first output the numnber of the sample, as shown in the sample output.Then print the approximate age in the format

The approximate age is x years.

If the age is less than 10,000 years, x should be rounded to the colsest multiple of 100 years (rounding up in case of a tie). If the age is more than 10,000 years, round it to the closest multiple of 1000 years (again rounding up in case of a tie).

Print a blank line after each sample.


Sample Input

1 405
5 175
0 0


Sample Output

Sample #1
The approximate age is 5700 years.

Sample #2
The approximate age is 26000 years.


解题报告:

题目主要意思就是根据C14计算文物年龄,根据公式即可r=ln(810/v) / ln2 衰变的次数r,速率v=d/w

还有要注意的就是输出了。


#include<iostream>
#include<cmath>
#include<cstdio> 
using namespace std;
int main()
{
	double d,w,r,Y;
	int num=0;
	while(cin>>w>>d)
	{
		if(w==0&&d==0)
		    break;
		num++;
		r=log((810.0*w/d))/log(2);   //r=ln(810/v) / ln2 衰变的次数 v=d/w   
		Y=5730*r;
		if(Y<=10000)    //小于10000年的,输出100的倍数 列如5730输出5700; 
        { 
            Y/=100; 
            Y+=0.5; 
            Y=(int)Y; 
            Y*=100; 
        } 
        else if(Y>10000)  //大于10000年的,输出1000的倍数 
        { 
            Y/=1000; 
            Y+=0.5; 
            Y=(int)Y; 
            Y*=1000; 
        }    
        cout<<"Sample #"<<num<<endl; 
        cout<<"The approximate age is "<<(int)Y<<" years."<<endl; 
        cout<<endl;
    }
    return 0;
}



考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成与缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例与代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划与运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真与优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率与创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建与求解过程,重点关注不确定性处理方法与需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习与交叉验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值