Hdu3835R(N) (3)

为啥没做强制转换就WA?

#include<stdio.h>
#include<math.h>
int main()
{
    int p,q,n,i,x,y,num,xx[100000],yy[100000],len;
   
    while(scanf("%d",&n)!=EOF)
    {
       p=q=num=0;
       len = (int)(sqrt((double)(n/2.0)));
       for( x=0; x<=len; x++)
		{
			y = (int)sqrt((double)n - x*x);
			
			if(y<x)
			  break;
			else
			  if( x*x + y*y != n )
                 continue;
              else{
                  xx[p++]=x;
                  yy[q++]=y;
                  }
        
       }
       if(n==0)
         printf("%d\n",++num);
       else
       {
         if(p!=0)
         {
            if(xx[0]==0)
              num=4;
            else
            {
               if(yy[0]==xx[0])
                  num=4;
               else
                 num=8;
            }      
            for(i=1;i<p;i++)
              if(xx[i]==yy[i])
                num+=3;
              else
                num+=8;
         }    
         printf("%d\n",num);     
       }  
            
    }
    return 0;
}    
  


### HDU OJ 排列组合问题解法 排列组合问题是算法竞赛中的常见题型之,涉及数学基础以及高效的实现技巧。以下是关于如何解决此类问题的些通用方法和具体实例。 #### 数学基础知识 在处理排列组合问题时,需要熟悉以下几个基本概念: - **阶乘计算**:用于求解全排列的数量 $ n! = n \times (n-1) \times ... \times 1 $[^4]。 - **组合数公式**:$ C(n, k) = \frac{n!}{k!(n-k)!} $ 表示从 $ n $ 中选取 $ k $ 的方案数[^5]。 - **快速幂运算**:当涉及到模运算时,可以利用费马小定理优化逆元的计算[^6]。 #### 题目推荐与分析 以下是些典型的 HDU OJ 上的排列组合题目及其可能的解法: ##### 1. 基础排列组合计数 - **HDU 2039 近似数** - 描述:给定两个整数 $ a $ 和 $ b $,统计区间内的近似数数量。 - 方法:通过枚举每位上的可能性来构建合法数字并计数[^7]。 ```cpp #include <iostream> using namespace std; long long comb(int n, int r){ if(r > n || r < 0)return 0; long long res=1; for(int i=1;i<=r;i++)res=res*(n-i+1)/i; return res; } int main(){ int t,n,k; cin>>t; while(t--){ cin>>n>>k; cout<<comb(n+k-1,k)<<endl; // 组合数应用 } } ``` ##### 2. 动态规划的应用 - **HDU 1028 Ignatius and the Princess III** - 描述:给出正整数 $ m $ 和 $ n $,问有多少种方式把 $ m $ 分成最多 $ n $ 份。 - 方法:定义状态转移方程 $ dp[i][j]=dp[i-1][j]+dp[i][j-i] $ 来表示当前总和为 $ j $ 并分成至多 $ i $ 份的情况数目[^8]。 ```cpp #include<bits/stdc++.h> using namespace std; const int MAXN=1e3+5; long long c[MAXN][MAXN]; void init(){ memset(c,0,sizeof(c)); c[0][0]=1; for(int i=1;i<MAXN;i++){ c[i][0]=c[i][i]=1; for(int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%(1e9+7); } } int main(){ init(); int T,m,n; scanf("%d",&T); while(T--){ scanf("%d%d",&m,&n); printf("%lld\n",c[m+n-1][min(m,n)]); } } ``` #### 总结 针对不同类型的排列组合问题,可以选择合适的工具和技术加以应对。无论是简单的直接计算还是复杂的动态规划模型,都需要扎实的基础知识作为支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值