Zookeeper的工作原理

本文深入探讨了Zookeeper的ZAB协议,包括其在主备模式下的数据一致性维护、崩溃恢复机制、Leader选举过程及数据同步策略。阐述了Zookeeper如何通过单一主进程处理客户端事务请求,利用ZAB协议保证全局变更序列的一致性。

转自:https://blog.youkuaiyun.com/u013679744/article/details/79240249

Zookeeper使用了ZAB(Zookeeper Atomic Broadcast)协议,进行了消息广播,崩溃恢复,数据同步

基于该协议,ZooKeeper 实现了一种主备模式的系统架构来保持集群中各个副本之间的数据一致性,同时其崩溃恢复过程也确保zk集群的高可用性,所以Leader是主,follower是备是副本?


Zookeeper使用一个单一主进程来接收并处理客户端的所有事务请求,并采用ZAB的原子广播协议,将服务器数据的状态变更以事务Proposal的形式广播到所有的副本进程上,并且ZAB协议能够保证一个全局的变更序列。


ZAB协议的核心是定义了对于那些会改变Zookeeper服务器数据状态的事务请求的处理方式。当有写请求时,就把事务提交给loader,loader会广播这个事务让所有的副本都写入这个数据

Zookeeper 客户端会随机连接到 Zookeeper 集群的一个节点,如果是读请求,就直接从当前节点中读取数据;如果是写请求且当前节点不是leader,那么节点就会向 leader 提交事务,leader 会广播事务,只要有超过半数节点写入成功,该写请求就会被提交(类 2PC 协议)。

那么问题来了:

主从架构下,leader 崩溃,数据一致性怎么保证?
选举 leader 的时候,整个集群无法处理写请求,所以自然不会有数据一致性的问题

如何快速进行 leader 选举?
所以zab协议重要的就是:1. 消息广播协议(leader向其他节点广播事务)  2. leader选举(快速选举过程fast leader election,集群刚启动时(还没有loader),leader崩溃或leader与集群中超过一半的节点断连后(整个集群没法用)) 3. leader重新选举后,如何进行数据同步到一致状态

事务ID的概念

在 ZAB 协议的事务编号 Zxid 设计中,Zxid 是一个 64 位的数字,其中低 32 位是一个简单的单调递增的计数器,针对客户端每一个事务请求,计数器加 1;而高 32 位则代表 Leader 周期 epoch 的编号,每选产生一个新的 Leader 服务器时,就会从这个 Leader 服务器上取出其本地日志中最大事务的ZXID(因为所有follower的事务是一样的),并从中读取 epoch 值,然后加 1,以此作为新的 epoch,并将低 32 位从 0 开始计数。

epoch:可以理解为当前集群所处的年代或者周期,每个 leader 就像皇帝,都有自己的年号,所以每次改朝换代,leader 变更之后,都会在前一个年代的基础上加 1。这样就算旧的 leader 崩溃恢复之后,也没有人听他的了,因为 follower 只听从当前年代的 leader 的命令。

ZAB协议的两种基本模式:崩溃恢复模式和消息广播模式。其过程为:

当系统启动或leader服务器出现故障时,进入故障恢复模式,将会开启新的一轮选举,选举产生的leader会与过半的follower进行同步,使数据一致,当与过半的机器同步完成后,就退出恢复模式,进入消息广播模式。当一台遵从zab协议的服务器启动时,如果检测到leader在广播消息,会自动进入恢复模式,当其完成与leader的同步之后,则进入广播模式。所以,zk还可以保证易扩展性。(没进行数据同步,就不能加入真正可用的follower列表)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

标题中提及的“BOE-B2-154-240-JD9851-Gamma2.2_190903.rar”标识了一款由京东方公司生产的液晶显示单元,属于B2产品线,物理规格为154毫米乘以240毫米,适配于JD9851型号设备,并采用Gamma2.2标准进行色彩校正,文档生成日期为2019年9月3日。该压缩文件内包含的代码资源主要涉及液晶模块的底层控制程序,采用C/C++语言编写,用于管理显示屏的基础运行功能。 液晶模块驱动作为嵌入式系统的核心软件组成部分,承担着直接操控显示硬件的任务,其关键作用在于通过寄存器读写机制来调整屏幕的各项视觉参数,包括亮度、对比度及色彩表现,同时负责屏幕的启动与关闭流程。在C/C++环境下开发此类驱动需掌握若干关键技术要素: 首先,硬件寄存器的访问依赖于输入输出操作,常借助内存映射技术实现,例如在Linux平台使用`mmap()`函数将寄存器地址映射至用户内存空间,进而通过指针进行直接操控。 其次,驱动需处理可能产生的中断信号,如帧缓冲区更新完成事件,因此需注册相应的中断服务例程以实时响应硬件事件。 第三,为确保多线程或进程环境下共享资源(如寄存器)的安全访问,必须引入互斥锁、信号量等同步机制来避免数据竞争。 第四,在基于设备树的嵌入式Linux系统中,驱动需依据设备树节点中定义的硬件配置信息完成初始化与参数设置。 第五,帧缓冲区的管理至关重要,驱动需维护该内存区域,保证图像数据准确写入并及时刷新至显示面板。 第六,为优化能耗,驱动应集成电源管理功能,通过寄存器控制实现屏幕的休眠与唤醒状态切换。 第七,针对不同显示设备支持的色彩格式差异,驱动可能需执行色彩空间转换运算以适配目标设备的色彩输出要求。 第八,驱动开发需熟悉液晶显示控制器与主处理器间的通信接口协议,如SPI、I2C或LVDS等串行或并行传输标准。 最后,完成代码编写后需进行系统化验证,包括基础显示功能测试、性能评估及异常处理能力检验,确保驱动稳定可靠。 该源代码集合为深入理解液晶显示控制原理及底层驱动开发实践提供了重要参考,通过剖析代码结构可掌握硬件驱动设计的具体方法与技术细节。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值