锁的优化

以下大部分内容转自  http://blog.youkuaiyun.com/u010425776/article/details/58598307

 

 

 

 

 

自旋锁

  • 背景:互斥同步对性能最大的影响是阻塞,挂起和恢复线程都需要转入内核态中完成;并且通常情况下,共享数据的锁定状态只持续很短的一段时间,为了这很短的一段时间进行上下文切换并不值得。
  • 原理:当一条线程需要请求一把已经被占用的锁时,并不会进入阻塞状态,而是继续持有CPU执行权等待一段时间,一直循环在那里看是否该自旋锁的保持者已经释放了锁,如果释放锁就拿锁,如果还没释放锁就继续循环,该过程称为『自旋』
  • 优点:由于自旋等待锁的过程线程并不会引起上下文切换,因此比较高效;
  • 缺点:自旋等待过程线程一直占用CPU执行权但不处理任何任务,因此若该过程过长,那就会造成CPU资源的浪费(可以加个参数设置最多持续尝试次数)
  • 自适应自旋:自适应自旋可以根据以往自旋等待时间的经验,计算出一个较为合理的本次自旋等待时间。

锁清除

 

编译器会清除一些使用了同步,但同步块中没有涉及共享数据的锁,从而减少多余的同步。

锁粗化

若有一系列操作,反复地对同一把锁进行上锁和解锁操作,编译器会扩大这部分代码的同步块的边界,从而只使用一次上锁和解锁操作。

轻量级锁

  • 本质:使用CAS取代互斥同步。
  • 背景:『轻量级锁』是相对于『重量级锁』而言的,而重量级锁就是传统的锁。
  • 轻量级锁与重量级锁的比较: 
    • 重量级锁是一种悲观锁,它认为总是有多条线程要竞争锁,所以它每次处理共享数据时,不管当前系统中是否真的有线程在竞争锁,它都会使用互斥同步来保证线程的安全;
    • 而轻量级锁是一种乐观锁,它认为锁存在竞争的概率比较小,所以它不使用互斥同步,而是使用CAS操作来获得锁,这样能减少互斥同步所使用的『互斥量』带来的性能开销
  • 实现原理: 
    • 对象头称为『Mark Word』,虚拟机为了节约对象的存储空间,对象处于不同的状态下,Mark Word中存储的信息也所有不同。
    • Mark Word中有个标志位用来表示当前对象所处的状态。
    • 当线程请求锁时,若该锁对象的Mark Word中标志位为01(未锁定状态),则在该线程的栈帧中创建一块名为『锁记录』的空间,然后将锁对象的Mark Word拷贝至该空间;最后通过CAS操作将锁对象的Mark Word指向该锁记录;
    • 若CAS操作成功,则轻量级锁的上锁过程成功;
    • 若CAS操作失败,再判断当前线程是否已经持有了该轻量级锁;若已经持有,则直接进入同步块;若尚未持有,则表示该锁已经被其他线程占用,此时轻量级锁就要膨胀成重量级锁。
  • 前提:轻量级锁比重量级锁性能更高的前提是,在轻量级锁被占用的整个同步周期内,不存在其他线程的竞争。若在该过程中一旦有其他线程竞争,那么就会膨胀成重量级锁,从而除了使用互斥量以外,还额外发生了CAS操作,因此更慢!

偏向锁

  • 作用:偏向锁是为了消除无竞争情况下的同步原语,进一步提升程序性能。
  • 与轻量级锁的区别:轻量级锁是在无竞争的情况下使用CAS操作来代替互斥量的使用,从而实现同步;而偏向锁是在无竞争的情况下完全取消同步。
  • 与轻量级锁的相同点:它们都是乐观锁,都认为同步期间不会有其他线程竞争锁。
  • 原理:当线程请求到锁对象后,将锁对象的状态标志位改为01,即偏向模式。然后使用CAS操作将线程的ID记录在锁对象的Mark Word中。以后该线程可以直接进入同步块,连CAS操作都不需要。但是,一旦有第二条线程需要竞争锁,那么偏向模式立即结束,进入轻量级锁的状态。
  • 优点:偏向锁可以提高有同步但没有竞争的程序性能。但是如果锁对象时常被多条线程竞争,那偏向锁就是多余的。
  • 偏向锁可以通过虚拟机的参数来控制它是否开启。

 

优化是指在多线程编程中,通过改进的机制和使用方式来提高程序的性能和并发能力。synchronized关键字是Java中最常用的机制之一,它可以保证同一时间只有一个线程可以进入被synchronized修饰的代码块。下面是一些synchronized优化的方法: 1. 减小的粒度:如果在一个方法中有多个synchronized代码块,可以考虑将这些代码块拆分成多个方法,以减小的粒度。这样可以使得多个线程可以并发执行不同的代码块,提高程序的并发性能。 2. 使用局部变量替代成员变量:在使用synchronized关键字时,尽量使用局部变量而不是成员变量。因为成员变量的访问需要通过对象实例来进行,而局部变量的访问是线程私有的,不需要加。 3. 使用同步代码块代替同步方法:在某些情况下,使用同步代码块比使用同步方法更加灵活。同步代码块可以指定的粒度,只对需要同步的代码进行加,而不是整个方法。 4. 使用volatile关键字:volatile关键字可以保证变量的可见性和禁止指令重排序,可以在一定程度上替代synchronized关键字。但是需要注意,volatile关键字只能保证单个变量的原子性,不能保证多个操作的原子性。 5. 使用Lock接口:Java提供了Lock接口及其实现类ReentrantLock,相比于synchronized关键字,Lock接口提供了更加灵活的机制。可以手动控制的获取和释放,可以实现公平和非公平,并且支持多个条件变量。 6. 使用读写:如果在多线程环境下,读操作远远多于写操作,可以考虑使用读写ReadWriteLock来提高程序的并发性能。读写允许多个线程同时读取共享数据,但只允许一个线程写入共享数据。 7. 使用并发集合类:Java提供了一些并发集合类,ConcurrentHashMap、ConcurrentLinkedQueue等,它们内部使用了一些优化的技术,可以提高多线程环境下的并发性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值