一、构造方法说明
先看构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
corePoolSize:int类型,核心线程数量。指的是哪怕没有正在执行的task,也不会结束的线程
allowCoreThreadTimeOut:boolean类型,是否允许核心线程超时。这个不是构造方法里面的,放在这里也是为了参数说明。默认false,为true时代表允许核心线程也可以结束线程
maximumPoolSize :int类型,最大线程数。指的是超过这个数量则不会创建新的线程。新的任务会被添加到workQueue中。
workQueue:BlockingQueue<Runnable>类型,阻塞的链表结构,保存任务队列。一个线程池中只会有一个任务队列,超过一定数量时会调用handler进行处理。
keepAliveTime:int类型,允许存活时间。指的是如果线程执行完了所有的task任务,超过这个时间未获取到新的任务则会结束线程。
threadFactory:执行器创建新线程时要使用的工厂。利用工厂模式创建新的线程,不同工厂提供的生成策略不一样。Executors中提供了两种实现方式DefaultThreadFactory、PrivilegedThreadFactory
handler:拒绝策略。当任务数量超过workQueue中所允许的最大数量后所执行的策略。
二、调用流程
我们先创建一个简单的默认线程池,核心线程数为1,最大线程数为2。
ThreadPoolExecutor executor = (new ThreadPoolExecutor(1, 2,
5L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()
));
1、执行起点就是简单的execute
executor.execute(new Runnable() {
@Override
public void run() {
System.out.println("bbb");
}
});
2、execute方法
public void execute(Runnable command) {
if (command == null)
...
int c = ctl.get();//这是一个记录当前状态的值,前3位记录当前线程池运行状态,后面记录线程数量
if (workerCountOf(c) < corePoolSize) {
//正在运行的线程数小于核心线程数,则直接创建新的Worker
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {//这里已经把任务加入到队列当中了
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
//如果正在运行中,并且正在执行的线程数量为0,则创建新的Worker。为创建第一个线程时
addWorker(null, false);
}
else if (!addWorker(command, false))//走正常添加流程
reject(command);
}
总体上来说,就是说当前线程数量为0时,直接执行任务。
否则,会把任务加入到workQueue当中,根据条件判断是否需要创建新的worker。、
要注意的是,调用addWorker并不是一定能够创建新的Worker
3、addWorker方法
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
...
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
//core一般都是false,true的情况下也会在外面判断是否小于maximumPoolSize。所以这里认为线程数量大于maximumPoolSize时则不会创建新的线程。
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
//创建新的worker。worker为线程的代理类,控制线程的调度处理。
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();//Thread线程启动
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
4、Worker类
这是一个线程代理类,实现了Runnable接口,并把自身对象传递给Thread,所以线程启动时调用的是Worker的run方法。而worker在run方法中执行一些调度逻辑,从而实现了task依次执行。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);//把自身传递给thread
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);//线程启动时则会执行Runnable的run方法,就会调到这里。
}
...
}
5、runWorker方法
该方法负责线程执行的整个流程。
其实就是负责通过getTask方法获取Runnable的任务,然后执行。如果执行完成,则会调用processWorkerExit()方法进行各种后处理。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
6、getTask方法
该方法负责调度,就好像一个包工头。每个工人(worker)过来向包工头(getTask)请求任务,如果有就返回任务,然后工人就拿着任务回去干活了。
如果没有任务,则有两种策略。
第一种:包工头说你给我等着,所以工人就阻塞在这里了。一直等到来了新的任务,工人就开开心心的拿回去继续干活了。
第二种:包工头说你等几分钟,如果有活你就拿回去干,没有的话你就回去下班吧。
对应的代码段为:
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :对应的第二种策略,等待keepAliveTime时间,超时则返回null。
当然如果返回了null不会立马返回,会设置timedOut=true,再次循环的时候返回null跳出。
workQueue.take();对应第一种策略,一直等到有任务才返回runnable对象。
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
7、processWorkerExit方法
把Worker从workers中移除,结束
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);
} finally {
mainLock.unlock();
}
tryTerminate();
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);//这里是补偿策略,一般是走不到这里的。上面就直接return了
}
}
三、总结
总体来说,就是分了几个线程去执行task任务,但是都是向同一个Block队列请求任务。如果没有任务时,线程则会根据不同的策略,有的线程结束,有的线程block住等待任务。由于线程时block的,所以也不会占用cpu资源。
这里有一点需要注意的就是,比如核心线程数为3,那么不是说永远维持三个用不结束的线程,而是说永远都维持有至少三个正在运行的线程。比如三个线程的基础上,又加入了一个线程。那么前面的三个线程中首个执行完task后也是会结束的。
另外由于需要保证最多线程数量,以及task不会被重复执行,所以getTask、addWorker以及一些线程池状态都加了锁。则会降低一定的效率。
总结一些:
线程池优势:
1、实现Thread的复用,避免重复创建太多Thread对象。
2、线程池来维持一定数量的线程运行,避免同一时间过多同时运行的线程造成效率下降。(就好比在楼道里发生紧急撤离时,排队按秩序离开的效率,要比无秩序快的多)
线程池劣势:
1、由于需要对象来维持这一秩序,所以会造成额外的内存消耗。
2、一个线程调度执行几个task,效率会降低。
3、各种锁的存在,会降低性能。