我自己做下记录
keras 训练代码
https://github.com/matterport/Mask_RCNN
1.keras 模型转 .pb
import tensorflow as tf
from keras import backend as K
from tensorflow.python.framework import graph_util
model_keras = model.keras_model
# All new operations will be in test mode from now on.
K.set_learning_phase(0)
# Create output layer with customized names
num_output = 7
pred_node_names = ["detections", "mrcnn_class", "mrcnn_bbox", "mrcnn_mask",
"rois", "rpn_class", "rpn_bbox"]
pred_node_names = ["output_" + name for name in pred_node_names]
pred = [tf.identity(model_keras.outputs[i], name=pred_node_names[i])
for i in range(num_output)]
sess = K.get_session()
# Get the object detection graph
od_graph_def = graph_util.convert_variables_to_constants(sess,
sess.graph.as_graph_def(),
pred_node_names)
model_dirpath = os.path.dirname("model/")
if not os.path.exists(model_dirpath):
os.mkdir(model_dirpath)
filename = 'seg_model.pb'
pb_filepath = os.path.join(model_dirpath, filename)
print('Saving frozen graph {} ...'.format(os.path.basename(pb_filepath)))
frozen_graph_path = pb_filepath
with tf.gfile.GFile(frozen_graph_path, 'wb') as f:
f.write(od_graph_def.SerializeToString())
2.windows 调用代码
#include "pch.h"
#include <iostream>
#include <tchar.h>
#define COMPILER_MSVC
#define NOMINMA
//#include "stdafx.h"
#include <iostream>
//#include <Eigen\\Dense>
#include "tensorflow/core/public/session.h"
#include "tensorflow/cc/ops/standard_ops.h"
using namespace tensorflow;
#define COMPILER_MSVC
#define NOMINMAX
#define _SCL_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#include <fstream>
#include <utility>
#include <vector>
#include <iostream>
#include <sstream>
#include <string>
#include <tensorflow/cc/ops/array_ops.h>
#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include<vector>
using namespace cv;
// These are all common classes it's handy to reference with no namespace.
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;
using namespace std;
// ensure TensorFlow C++ build OK
//int main() {
// printf("Hello World from Tensorflow C libnrary version %s\n", TF_Version());
// tensorflow::Session* session = tensorflow::NewSession(tensorflow::SessionOptions());
// return 0;
//}
struct maskBox {
float fScore;
int x1;
int x2;
int y1;
int y2;
int area;
vector<cv::Point> vecContourPt;
int iClass;
};
//升序排列
bool cmpScore(maskBox lsh, maskBox rsh) {
if (lsh.fScore < rsh.fScore)
return true;
else
return false;
}
void nms(vector<maskBox> &boundingBox_, const float overlap_threshold, string modelname = "Union") {
if (boundingBox_.empty()) {
return;
}
//对各个候选框根据score的大小进行升序排列
sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);
float IOU = 0;
float maxX = 0;
float maxY = 0;
float minX = 0;
float minY = 0;
vector<int> vPick;
int nPick = 0;
multimap<float, int> vScores; //存放升序排列后的score和对应的序号
const int num_boxes = boundingBox_.size();
vPick.resize(num_boxes);
for (int i = 0; i < num_boxes; ++i) {
vScores.insert(pair<float, int>(boundingBox_[i].fScore, i));
}
while (vScores.size() > 0) {
int last = vScores.rbegin()->second; //反向迭代器,获得vScores序列的最后那个序列号
vPick[nPick] = last;
nPick += 1;
auto iter = vScores.end();
iter--;
vScores.erase(iter);
for (multimap<float, int>::iterator it = vScores.begin(); it != vScores.end();) {
int it_idx = it->second;
maxX = max(boundingBox_.at(it_idx).x1, boundingBox_.at(last).x1);
maxY = max(boundingBox_.at(it_idx).y1, boundingBox_.at(last).y1);
minX = min(boundingBox_.at(it_idx).x2, boundingBox_.at(last).x2);
minY = min(boundingBox_.at(it_idx).y2, boundingBox_.at(last).y2);
//转换成了两个边界框相交区域的边长
maxX = ((minX - maxX + 1) > 0) ? (minX - maxX + 1) : 0;
maxY = ((minY - maxY + 1) > 0) ? (minY - maxY + 1) : 0;
//求交并比IOU
IOU = (maxX * maxY) / (boundingBox_.at(it_idx).area + boundingBox_.at(last).area - IOU);
if (IOU > overlap_threshold) {
it = vScores.erase(it++); //删除交并比大于阈值的候选框,erase返回删除元素的下一个元素
}
else {
it++;
}
}
}
vPick.resize(nPick);
vector<maskBox> tmp_;
tmp_.resize(nPick);
for (int i = 0; i < nPick; i++) {
tmp_[i] = boundingBox_[vPick[i]];
}
boundingBox_ = tmp_;
}
int main(int argc, char* argv[])
{
cv::Mat inputMat;
inputMat = cv::imread("F:\\data\\segdata\\test\\16378\\16378.jpg", CV_LOAD_IMAGE_COLOR);
// cvtColor(inputMat, inputMat, CV_BGR2GRAY);
int TF_MASKRCNN_IMG_WIDTHHEIGHT = 768;
cv::Scalar TF_MASKRCNN_MEAN_PIXEL(123.7, 116.8, 103.9);
// float TF_MASKRCNN_IMAGE_METADATA[38] = { 0, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT, 3, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT, 3, 0, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT,1, 0, 0 };
float TF_MASKRCNN_IMAGE_METADATA[38] = { 0, inputMat.rows, inputMat.cols, 3, TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT, 3, 17, 0, TF_MASKRCNN_IMG_WIDTHHEIGHT,TF_MASKRCNN_IMG_WIDTHHEIGHT, 0.627, 0 };
cv::Mat dest = cv::Mat(inputMat.size(), CV_8UC3);
dest = inputMat.clone();
//Resizr to square with max dim, so we can resize it to 256x256
int largestDim = inputMat.size().height > inputMat.size().width ? inputMat.size().height : inputMat.size().width;
cv::Mat squareInputMat(cv::Size(largestDim, largestDim), CV_8UC3);
int leftBorder = (largestDim - inputMat.size().width) / 2;
int topBorder = (largestDim - inputMat.size().height) / 2;
cv::copyMakeBorder(inputMat, squareInputMat, topBorder, largestDim - (inputMat.size().height + topBorder), leftBorder, largestDim - (inputMat.size().width + leftBorder), cv::BORDER_CONSTANT, cv::Scalar(0));
cv::Mat resizedInputMat(cv::Size(TF_MASKRCNN_IMG_WIDTHHEIGHT, TF_MASKRCNN_IMG_WIDTHHEIGHT), CV_8UC3);
cv::resize(squareInputMat, resizedInputMat, resizedInputMat.size(), 0, 0);
cv::Mat dst = resizedInputMat.clone();
// Need to "mold_image" like in mask rcnn
cv::Mat moldedInput(resizedInputMat.size(), CV_32FC3);
resizedInputMat.convertTo(moldedInput, CV_32FC3);
cv::subtract(moldedInput, TF_MASKRCNN_MEAN_PIXEL, moldedInput);
tensorflow::Tensor inputTensor(tensorflow::DT_FLOAT, { 1, moldedInput.size().height, moldedInput.size().width, 3 }); // single image instance with 3 channels
float_t *p = inputTensor.flat<float_t>().data();
cv::Mat inputTensorMat(moldedInput.size(), CV_32FC3, p);
moldedInput.convertTo(inputTensorMat, CV_32FC3);
int TF_MASKRCNN_IMAGE_METADATA_LENGTH = 38;
// Copy the TF_MASKRCNN_IMAGE_METADATA data into a tensor
tensorflow::Tensor inputMetadataTensor(tensorflow::DT_FLOAT, { 1, TF_MASKRCNN_IMAGE_METADATA_LENGTH });
auto inputMetadataTensorMap = inputMetadataTensor.tensor<float, 2>();
for (int i = 0; i < TF_MASKRCNN_IMAGE_METADATA_LENGTH; ++i) {
inputMetadataTensorMap(0, i) = TF_MASKRCNN_IMAGE_METADATA[i];
}
// for specific 1920x1280 images
auto input_anchors = tensorflow::Tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({ 1,147312,4 }));
auto anchors_API = input_anchors.tensor<float, 3>();
//input_anchors.flat<float_t>()(0, 0, 0) = 1.111111;
string fileName = "F:\\gc\\maskrcnntest2017\\maskrcnntest\\x64\\Release\\model\\anchors.txt";
fstream in;
in.open(fileName.c_str(), ios::in);
if (!in.is_open()) {
cout << "Can not find " << fileName << endl;
system("pause");
}
string buff;
int i = 0; //line i
while (getline(in, buff)) {
vector<float> nums;
// string->char *
char *s_input = (char *)buff.c_str();
const char * split = ",";
char *p2 = strtok(s_input, split);
double a;
while (p2 != NULL) {
// char * -> int
a = atof(p2);
//cout << a << endl;
nums.push_back(a);
p2 = strtok(NULL, split);
}//end while
for (int b = 0; b < nums.size(); b++) {
anchors_API(0, i, b) = nums[b];
}//end for
i++;
}//end while
in.close();
string root_dir = "";
string graph = "F:\\gc\\maskrcnntest2017\\maskrcnntest\\x64\\Release\\model\\seg_model.pb";
// First we load and initialize the model.
string graph_path = tensorflow::io::JoinPath(root_dir, graph);
tensorflow::GraphDef graph_def;
tensorflow::SessionOptions options;
std::unique_ptr<tensorflow::Session> session(tensorflow::NewSession(options));
Status load_graph_status =
ReadBinaryProto(tensorflow::Env::Default(), graph_path, &graph_def);
//for (int n = 0; n < graph_def.node_size(); ++n) {
// graph_def.mutable_node(n)->clear_device();
//}
//tfSession.reset(tensorflow::NewSession(tensorflow::SessionOptions()));
TF_CHECK_OK(session->Create(graph_def));
//Status session_create_status = session->Create(graph_def);
//Status load_graph_status = LoadGraph(graph_path, &session);
if (!load_graph_status.ok()) {
LOG(ERROR) << "LoadGraph ERROR!!!!" << load_graph_status;
cout << load_graph_status << endl;
return -1;
}
// Actually run the image through the model.
std::vector<Tensor> outputs;
tensorflow::Status run_status = session->Run({ { "input_image", inputTensor },{ "input_image_meta", inputMetadataTensor },{ "input_anchors",input_anchors } },
{ "output_detections", "output_mrcnn_class", "output_mrcnn_bbox", "output_mrcnn_mask",
"output_rois", "output_rpn_class", "output_rpn_bbox" },
{},
&outputs);
if (!run_status.ok()) {
LOG(ERROR) << "Running model failed: " << run_status;
return -1;
}
//if (outputs[3].shape().dims() != 5 || outputs[3].shape().dim_size(4) != 2)
//{
// throw std::runtime_error("Expected mask dimensions to be [1,100,28,28,2] but got: " + outputs[3].shape().DebugString());
//}
vector<maskBox> vecBox;
auto detectionsMap = outputs[0].tensor<float, 3>();
auto mask = outputs[3].tensor<float, 5>();
for (int i = 0; i < outputs[3].shape().dim_size(1); ++i)
{
auto y1 = detectionsMap(0, i, 0) * TF_MASKRCNN_IMG_WIDTHHEIGHT;
float x1 = detectionsMap(0, i, 1) * TF_MASKRCNN_IMG_WIDTHHEIGHT;
auto y2 = detectionsMap(0, i, 2) * TF_MASKRCNN_IMG_WIDTHHEIGHT;
float x2 = detectionsMap(0, i, 3) * TF_MASKRCNN_IMG_WIDTHHEIGHT;
auto scoreAtI = detectionsMap(0, i, 5); // detectionsMap(0, i, 1) 0.8862123; detectionsMap(0, i, 3) 0.91774625
auto detectedClass = detectionsMap(0, i, 4);
cout << x1 << " " << x2 << " " << y1 << " " << y2 << " " << scoreAtI << endl;
maskBox stMaskBox;
stMaskBox.fScore = scoreAtI;
stMaskBox.iClass = detectedClass;
auto walala = detectionsMap(0, i, 6);
auto maskHeight = (y2 - y1), maskWidth = (x2 - x1);
if (maskHeight != 0 && maskWidth != 0) {
// Pointer arithmetic
const int i0 = 0, /* size0 = (int)outputs[3].shape().dim_size(1), */ i1 = i,
size1 = (int)outputs[3].shape().dim_size(1),
h = (int)outputs[3].shape().dim_size(2),
w = (int)outputs[3].shape().dim_size(3);
int iClassNum = (int)outputs[3].shape().dim_size(4);
// int pointerLocationOfI = (i0*size1 + i1)*size2;
int pointerLocationOfI = h * w * iClassNum * i;
float_t *maskPointer = outputs[3].flat<float_t>().data();
// The shape of the detection is [28,28,2], where the last index is the class of interest.
// We'll extract index 1 because it's the toilet seat.
cv::Mat initialMask(cv::Size(h, w), CV_32FC(iClassNum), &maskPointer[pointerLocationOfI]); // CV_32FC2 because I know size4 is 2
cv::Mat detectedMask(initialMask.size(), CV_32FC1);
cv::extractChannel(initialMask, detectedMask, (int)detectedClass);
// Convert to B&W
cv::Mat binaryMask(detectedMask.size(), CV_8UC1);
cv::threshold(detectedMask, binaryMask, 0.5, 255, cv::THRESH_BINARY);
// First scale and offset in relation to TF_MASKRCNN_IMG_WIDTHHEIGHT
cv::Mat scaledDetectionMat(maskHeight, maskWidth, CV_8UC1);
cv::resize(binaryMask, scaledDetectionMat, scaledDetectionMat.size(), 0, 0);
vector<vector<cv::Point>> contours;
scaledDetectionMat.convertTo(scaledDetectionMat, CV_8UC1);
findContours(scaledDetectionMat, contours, CV_RETR_TREE, CHAIN_APPROX_NONE);
int iMaxArea = 0;
int iNum = 0;
for (int c = 0; c < contours.size(); c++)
{
if (contours[c].size() == 0) continue;
double area = contourArea(contours[c]);
// printf("area:%f \n", area);
if (iMaxArea > area)
{
iNum = c;
}
}
cv::Mat scaledOffsetMat(moldedInput.size(), CV_8UC1, cv::Scalar(0));
scaledDetectionMat.copyTo(scaledOffsetMat(cv::Rect(x1, y1, maskWidth, maskHeight)));
cvtColor(scaledDetectionMat, scaledDetectionMat, CV_GRAY2BGR);
int ilen = contours[iNum].size();
for (int k = 0; k < ilen; k++)
{
Point pt = contours[iNum][k];
Point org(x1, y1);
pt = org+pt;
contours[iNum][k] = pt;
}
//Scalar color(rand() / 255, rand() / 255, rand() / 255, rand() / 255);
//drawContours(dst, contours, iNum, color);
//Rect rect(x1, y1, x2 - x1, y2 - y1);
//rectangle(dst, rect, color, 1);
// string strText = to_string(stBox.iClass) + string(" ") + to_string(stBox.fScore);
// putText(dst, strText, Point(stBox.x1, stBox.y1), 1, 1, color);
stMaskBox.x1 = x1;
stMaskBox.x2 = x2;
stMaskBox.y1 = y1;
stMaskBox.y2 = y2;
stMaskBox.area = (x2 - x1)*(y2 - y1);
stMaskBox.vecContourPt = contours[iNum];
vecBox.push_back(stMaskBox);
}
/**/
}
nms(vecBox, 0.3, "Union");
for (int i = 0; i < vecBox.size(); i++)
{
maskBox stBox;
stBox = vecBox[i];
vector<vector<cv::Point>> contours;
contours.push_back(stBox.vecContourPt);
Scalar color(rand() / 255, rand() / 255, rand() / 255, rand() / 255);
drawContours(dst, contours, 0, color);
Rect rect(stBox.x1, stBox.y1, stBox.x2-stBox.x1, stBox.y2-stBox.y1);
rectangle(dst, rect, color, 1);
string strText = to_string(stBox.iClass) + string(" ") + to_string(stBox.fScore);
putText(dst, strText, Point(stBox.x1, stBox.y1), 2, 0.5, color);
}
cv::imshow("Detection Result", dst);
cv::waitKey(0);
//cv::imwrite("C:\\", dest);
return 0;
}
3.