机器学习入门基础(万千字总结)(建议收藏!!!)

目录

前言

1机器学习概述

1.1机器学习简介

1.1.1机器学习背景

1.1.2机器学习简介

1.1.3机器学习简史

1.1.4机器学习主要流派

1.2机器学习、人工智能和数据挖掘

1.2.1什么是人工智能

1.2.2什么是数据挖掘

1.2.3机器学习、人工智能与数据挖掘的关系

1.3典型机器学习应用领域

1.3.1典型机器学习应用领域---艺术创作

1.3.2典型机器学习应用领域---金融领域

1.3.3典型机器学习应用领域---医疗领域

1.3.4典型机器学习应用领域---自然语言处理

1.3.5网络安全

1.3.6工业领域

1.3.7机器学习在娱乐行业的应用

1.4机器学习算法分类

1.4.1机器学习算法分类---监督学习 

1.4.2机器学习算法分类---非监督学习

1.4.3机器学习算法分类---半监督学习

1.4.4机器学习算法选择

1.4.5机器学习算法分类---分类算法

1.4.6分类算法---决策树

1.4.7分类算法---支持向量机

1.4.8分类算法---最近邻算法

1.4.9分类算法---贝叶斯网络

1.4.10分类算法---神经网络

1.4.11机器学习算法分类---聚类算法

1.4.12聚类算法---BIRCH算法

1.4.13聚类算法---CURE算法

1.4.14聚类算法---k-均值算法

1.4.15聚类算法---DBSCAN算法

1.4.16聚类算法---OPTICS算法

1.4.17机器学习算法分类---关联分析

1.4.18关联分析---Apriori算法

1.4.19关联分析---FP-growth算法

1.4.20关联分析---Eclat算法

1.4.20机器学习算法分类---回归分析

1.4.21回归分析---线性回归

1.4.22回归分析---逻辑回归

1.4.23回归分析---多项式回归

1.4.24回归分析---岭回归

1.4.25回归分析---LASSO回归

1.4.26机器学习算法分类---深度学习

1.5机器学习的一般流程

1.5.1定义分析目标

1.5.2收集数据

1.5.3整理预处理

1.5.4数据建模

1.5.5模型训练

1.5.6模型评估

1.5.7模型应用

2机器学习的Python常用库

2.1Numpy简介及基本使用

2.1.1统计学

2.1.2大数据与统计学

2.1.3统计学在机器学习中的应用

2.1.4Numpy

2.1.5Numpy安装

2.1.6Numpy介绍

2.1.7Numpy基本使用

2.2Pandas简介及基本使用

2.2.1Pandas快速入门

2.2.2Pandas基本使用

2.3Matplotlib简介及基本使用

2.3.1Matplotlib

2.3.2Matplotlib安装

2.3.3Matplotlib介绍

2.4Scikit-Learn简介及基本使用

2.4.1Scikit-Learn简介

2.4.2Scikit-Learn的主要特点

2.4.3Scikit-Learn的基本使用

导入所需的库

数据准备

数据分割

模型训练

预测与评估

模型调优

2.4.4常见的Scikit-Learn功能

2.5波士顿房价预测实战

2.5.1综合案例

3回归算法与应用

3.1回归算法与应用

3.1.1回归分析

3.1.2常见数据集

3.1.3线性回归

3.1.4实验实现线性回归

3.1.5Python实现最小二乘法拟合直线

3.1.6原理与应用场景——岭回归和LASSO

3.1.7原理与应用场景——逻辑回归

4特征工程、降维与超参数调优

4.1特征工程

4.1.1特征工程概念

4.1.2特征工程的内容

4.1.3缺失值处理

4.1.4数据的特征值化

4.1.5数据特征选择

4.1.6数据转换

4.2降维与超参数调优

4.2.1数据降维

4.2.2超参数调优

5分类算法与应用

5.1分类问题简介

5.1.1分类算法概述

5.2k近邻算法

5.2.1KNN算法

5.2.2基于k近邻算法实现分类任务

5.2.3【案列】使用Python实现KNN

5.3概率模型和贝叶斯算法

5.3.1概率模型

5.3.2贝叶斯算法

5.3.3朴素贝叶斯算法

​编辑

5.4向量空间模型和支持向量机

5.4.1向量空间模型

5.4.2支持向量机

5.5集成学习

5.5.1集成模型

5.5.2决策树

5.5.3AdaBoost

6关联规则

6.1关联规则

6.1.1关联规则的概念

6.1.2apriori算法

7聚类算法与应用

7.1聚类算法概述与聚类中的数据机构

7.1.1聚类的主要目标

7.1.2聚类算法的种类

7.1.3聚类中的数据结构

7.1.4聚类算法的常见步骤

7.1.5聚类算法的应用

7.2划分聚类

7.2.1划分聚类的基本概念

7.2.2常见的划分聚类算法

7.2.3划分聚类算法的优缺点

优点:

缺点:

7.3.4划分聚类在应用中的实际使用

7.3层次聚类

7.3.1主要聚类方式

7.3.2引入层次聚类

7.3.3凝聚层次聚类

7.3.4凝聚层次聚类伪代码

7.3.5层次聚类运行过程

7.3.6层次聚类问题

7.3.7簇间相似度

7.3.8单链接聚类

7.3.9簇间相似度

7.3.10全链接的运算过程

7.3.11全链接聚类

7.3.12簇间相似度

7.3.13组平均链接聚类

7.3.14簇间相似度

7.3.15质心距离聚类

7.3.16层次聚类特点

7.3.17代码实现层次聚类

7.3.18实验07-2-使用层次聚类算法聚类

7.4密度聚类

7.4.1主要聚类方式

7.4.2密度聚类

7.4.3DBSCAN算法

DBSCAN算法的核心思想

DBSCAN的优缺点

优点:

缺点:

7.4.4DBSCAN的应用

7.4.5其他密度聚类方法

8神经网络

8.1神经网络介绍及神经网络相关概念

8.1.1神经网络的基本结构

8.1.2常见的神经网络类型

8.1.3神经网络中的训练过程

8.1.4神经网络中的重要概念

8.2神经网络识别MINIS手写数据集

8.2.1导入图片数据集

8.2.2分析MNIST图片特征,并定义训练变量

8.2.3构建模型

8.2.4训练模型并输出中间状态

8.2.5测试模型

8.2.6保存模型

8.2.7读取模型

9文本分析

9.1文本预处理

依赖库安装

导入库和加载数据

文本清理

9.2特征提取

词袋模型 (Bag of Words)

TF-IDF

9.3数据集划分

9.4模型训练

朴素贝叶斯分类器

支持向量机(SVM)

9.5模型评估

9.6进阶方法

使用深度学习(LSTM)

10图像数据分析

10.1图像数据概论

10.1.1图像数据概述

图像数据表示

10.1.2图像数据的读取与显示

安装依赖库

使用OpenCV读取图像

使用Pillow读取图像

10.1.3图像预处理

灰度化

图像缩放

图像去噪

边缘检测

10.1.4图像特征提取

计算颜色直方图

计算HOG特征

10.1.5图像分析与建模

图像分类

图像分割

10.2图像识别案例-人脸识别

10.2.1人脸识别的基本原理

10.2.2Python代码实现步骤

安装所需库

载入并检测人脸

提取和识别人脸特征

人脸匹配

识别人脸与标记

使用摄像头进行实时人脸识别

11深度学习入门

11.1深度学习概述与卷积神经网络

11.1.1深度学习概述

11.1.2卷积神经网络简介

11.1.3卷积神经网络的整体结构

11.1.4LeNet

11.1.5AlexNet网络

11.1.6VGG网络

11.1.7GoogLeNet

11.1.8深度残差网络

11.2循环神经网络

11.2.1RNN基本原理

11.2.2长短期记忆网络

11.3深度学习流行框架

1. TensorFlow

1.1 TensorFlow简介

1.2 TensorFlow的特点

1.3 TensorFlow基础代码示例

2. PyTorch

2.1 PyTorch简介

2.2 PyTorch的特点

2.3 PyTorch基础代码示例

3. Keras

3.1 Keras简介

3.2 Keras的特点

3.3 Keras基础代码示例

4. 总结

11.4基于卷积神经网络识别手写数字实战

11.4.1实验目的

11.4.2实验背景

11.4.3实验原理

11.4.4实验环境

11.4.5实验步骤:数据准备

11.4.6实验步骤:网络设计

11.4.7实验步骤:模型训练

11.4.8实验步骤:模型测试

11.4.9实验总结 

前言
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本文章涵盖了机器学习的基础知识,主要包括机器学习的概述、 回归、分类、聚类、神经网络、文本分析、图像分析、深度学习等经典的机器学习基础知识,还包括深度学习入门等拔高内容。 

1机器学习概述
介绍机器学习的基础概念和知识,包括机器学习简史、主要流派、与人工智能、数据挖掘的关系、应用领域、算法、一般流程等。

1.1机器学习简介
1.1.1机器学习背景
伴随着计算机计算能力的不断提升以及大数据时代的迅发展人工智能也取得了前所未有的进步。

很多企业均开始使用机器学习的相关技术于大部分行业中,以此获得更为强大的洞察力,也为企业的日常生活和企业运营带来了很大的帮助,从而提高了整个产品的服务质量。

机器学习的典型应用领域有:搜索引擎、自动驾驶、量化投资、计算机视觉、信用卡欺诈检测、游戏、数据挖掘、电子商务、图像识别、自然语言处理、医学诊断、证券金融市场分析以及机器人等相关领域,故在一定程度上,机器学习相关技术的进步也提升了人工智能领域发展的速度。

1.1.2机器学习简介
机器学习(MachineLearning),作为计算机科学的子领域,是人工智能领域的重要分支和实现方式。

机器学习的思想:计算机程序随着经验的积累,能够实现性能的提高。对于某一类任务T及其性能度量P,若一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。

主要的基础理论:数理统计,数学分析,概率论,线性代数,优化理论,数值逼近、计算复杂性理论。

机器学习的核心元素:算法、数据以及模型。

1.1.3机器学习简史
作为一门不断发展的学科,机器学习尽管在最近几年才发展成为一门独立的学科。

起源于20世纪50年代以来人工智能的逻辑推理、启发式搜索、专家系统、符号演算、自动机模型、模糊数学以及神经网络的反向传播BP算法等。如今作为机器学习重要的基础理论。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值