布隆过滤器
位图只能映射整形,而对于字符串却无能为力。
把字符串用哈希算法转成整形,映射一个位置进行标记
下面就是布隆过滤器设计思路
位图是直接定址法,不存在冲突,而字符串可能转成整形后,会有重合的地方,发生下面这种冲突(误判)。
布隆过滤器存在误判,如这里如果美团不存在,而B站存在,此时美团的位置被B站占据,有可能会误判为美团此时存在。
这种误判不可能完全去掉,但我们可以通过优化降低误判率。
优化方法:让每个值多映射几个位,如美团映射好几个位,就能减少上面误判的概率。理论而言,一个值映射的位越多,误判冲突的概率就越低,但如果映射过多,空间消耗就会增大。
判断某邮箱是否在黑名单中,可用布隆过滤器进行简单的过滤
完整代码
struct HashBKDR
{
// BKDR
size_t operator()(const string& key)
{
size_t val = 0;
for (auto ch : key)
{
val *= 131;
val += ch;
}
return val;
}
};
struct HashAP
{
// BKDR
size_t operator()(const string& key)
{
size_t hash = 0;
for (size_t i = 0; i < key.size(); i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ key[i] ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ key[i] ^ (hash >> 5)));
}
}
return hash;
}
};
struct HashDJB
{
// BKDR
size_t operator()(const string& key)
{
size_t hash = 5381;
for (auto ch : key)
{