【算法】动态规划专题⑥ —— 完全背包问题 python


前置知识


【算法】动态规划专题⑤ —— 0-1背包问题 + 滚动数组优化


完全背包问题是动态规划中的一种经典问题,它与0-1背包问题相似,但有一个关键的区别:在完全背包问题中,每种物品都有无限的数量可用。也就是说,你可以选择同一种物品多次放入背包,以使背包中的总价值最大。

示例分析
假设物品重量为 (w = [2, 3]),价值为 (v = [3, 4]),容量 (C = 5):

容量 (j)012345
初始化000000
物品1(w=2)003366
物品2(w=3)003467

最优解:选取 1 个物品1(重量2,价值3)和 1 个物品2(重量3,价值4),总价值为7。



进入正题


状态定义

dp[i][j] 表示前 (i) 种物品,背包容量为 j 时的最大总价值。

状态转移方程的推导

核心思想

对第 (i) 种物品,可以选择 0 次或多次,因此需要枚举所有可能的选取次数。

暴力枚举

对每种物品 (i) 和容量 (j),假设选取 (k) 次物品 (i),则转移方程为:

缺点:时间复杂度为 (O(n * C * kmax),其中 kmax= C/ w i w_i wi ,效率极低。


优化推导(消除对 k 的显式枚举)

观察到以下递推关系:

在这里插入图片描述

数学证明

假设在容量 (j) 时,最优解中包含 (m \geq 1) 个物品 (i),则总价值为:
dp[i][j] = dp[ i i i][ j j j - w i w_i wi] + v i v_i vi
这是因为在 ( j j j - w i w_i wi) 容量时,已经考虑了选取 (m-1) 个物品 (i) 的最优解。

因此,状态转移方程简化为:
dp[i][j] = max ( dp[i-1][j], dp[ i i i][ j j j - w i w_i wi] + v i v_i vi )



模板


完全背包问题 https://www.acwing.com/problem/content/3/

N N N 种物品和一个容量是 V V V 的背包,每种物品都有无限件可用。
i i i 种物品的体积是 v i v_i vi,价值是 w i w_i wi
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数, N , V N,V NV,用空格隔开,分别表示物品种数和背包容积。
接下来 N N N 行,每行两个整数 v i , w i v_i, w_i vi,wi,用空格隔开,分别表示第 i i i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0 \lt v_i, w_i \le 1000 0<vi,wi1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

code:

n, v = map(int, input().split())
dp = [[0] * (v + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
    wi, vi = map(int, input().split())
    for j in range(1, v + 1):
        if j - wi >= 0:
            dp[i][j] = max(dp[i - 1][j], dp[i][j - wi] + vi)
        else:
            dp[i][j] = dp[i - 1][j]
print(dp[n][v])

滚动数组优化:

n, v = map(int, input().split())
dp = [0] * (v + 1)
for i in range(1, n + 1):
    wi, vi = map(int, input().split())
    for j in range(wi, v + 1):
        dp[j] = max(dp[j], dp[j - wi] + vi)
print(dp[v])

不了解 滚动数组优化 的可点此进入


END
如果有更多问题或需要进一步的帮助,可以在评论区留言讨论哦!
如果喜欢的话,请给博主点个关注 谢谢


### 0-1 背包问题完全背包问题Python 实现 #### 0-1 背包问题 0-1 背包问题是组合优化中的经典问题之一,目标是在不超过容量的情况下最大化所选物品的价值[^1]。 对于这个问题的一种常见解法是动态规划。下面是一个基于此方法的具体实现: ```python def knapsack_01(weights, values, capacity): n = len(values) dp = [[0 for _ in range(capacity + 1)] for _ in range(n + 1)] for i in range(1, n + 1): for w in range(1, capacity + 1): if weights[i - 1] <= w: dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]) else: dp[i][w] = dp[i - 1][w] return dp[n][capacity] ``` 这段代码定义了一个函数 `knapsack_01` 接受三个参数:物品重量列表 `weights`、价值列表 `values` 和背包的最大承载量 `capacity`。通过构建二维数组 `dp` 来存储子问题的结果,从而避免重复计算并提高效率。 #### 完全背包问题 不同于0-1背包问题中每个物品只能被选取一次,在完全背包问题里每种类型的物品可以无限次放入背包。这里给出一种利用一维数组来简化空间复杂度的方法: ```python def knapsack_complete(weights, values, capacity): n = len(values) dp = [0] * (capacity + 1) for i in range(n): for j in range(weights[i], capacity + 1): dp[j] = max(dp[j], dp[j - weights[i]] + values[i]) return dp[-1] ``` 在这个版本中,同样创建了名为 `dp` 的表用于记录不同状态下的最优解;不过这次只用到了单层循环遍历所有可能的位置,并不断更新当前最佳方案直到达到最大容量为止[^4]。 上述两种算法都遵循着相似的设计思路——即自底向上地解决问题,先解决较小规模的情况再逐步扩展到更大范围内的实例上。这种方法不仅能够有效地减少不必要的运算次数,而且还能保证最终得到全局最优点。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值