Find the Image of a Matrix Using Row Echelon Form

Task: Compute the Column Space of a Matrix

In this task, you are required to implement a function matrix_image(A) that calculates the column space of a given matrix A. The column space, also known as the image or span, consists of all linear combinations of the columns of A. To find this, you'll use concepts from linear algebra, focusing on identifying independent columns that span the matrix's image. Your task: Implement the function matrix_image(A) to return the basis vectors that span the column space of A. These vectors should be extracted from the original matrix and correspond to the independent columns.

Example:

Input:

matrix = np.array([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
])
print(matrix_image(matrix))

Output:

# [[1, 2],
#  [4, 5],
#  [7, 8]]

Reasoning:

The column space of the matrix is spanned by the independent columns [1, 2], [4, 5], and [7, 8]. These columns form the basis vectors that represent the image of the matrix.


import numpy as np

def matrix_image(A):
    """
    Compute the column space (image) of a matrix A.
    
    Args:
        A: Input matrix as a numpy array
    
    Returns:
        A numpy array containing the basis vectors of the column space as columns
    """
    # Make a copy to avoid modifying the original
    A_copy = A.copy()
    
    # Convert to floating point for numerical stability
    A_copy = A_copy.astype(float)
    
    # Get dimensions
    m, n = A_copy.shape
    
    # Step 1: Compute the reduced row echelon form (RREF)
    # First transpose A to work with columns
    A_T = A_copy.T
    
    # Number of rows and columns in A_T
    rows, cols = A_T.shape
    
    # Initialize pivot positions
    pivot_positions = []
    
    # Gaussian elimination to get row echelon form
    r = 0  # current row
    for c in range(cols):
        # Find the pivot row
        pivot_row = -1
        for i in range(r, rows):
            if abs(A_T[i, c]) > 1e-10:  # Numerical tolerance for zero
                pivot_row = i
                break
        
        if pivot_row == -1:
            # No pivot in this column, move to the next column
            continue
        
        # Swap the pivot row with the current row
        if pivot_row != r:
            A_T[[r, pivot_row]] = A_T[[pivot_row, r]]
        
        # Normalize the pivot row
        pivot = A_T[r, c]
        A_T[r] = A_T[r] / pivot
        
        # Eliminate other rows
        for i in range(rows):
            if i != r:
                A_T[i] = A_T[i] - A_T[i, c] * A_T[r]
        
        # Record the pivot position
        pivot_positions.append(c)
        
        r += 1
        if r == rows:
            # No more rows to process
            break
    
    # Step 2: Extract linearly independent columns from the original matrix
    # The pivot columns in the row echelon form correspond to linearly independent columns in the original matrix
    basis = A[:, pivot_positions]
    
    return basis

Test Results3/3

官方题解
 


import numpy as np

def rref(A):
    # Convert to float for division operations
    A = A.astype(np.float32)
    n, m = A.shape

    for i in range(n):
        if A[i, i] == 0:
            nonzero_current_row = np.nonzero(A[i:, i])[0] + i
            if len(nonzero_current_row) == 0:
                continue
            A[[i, nonzero_current_row[0]]] = A[[nonzero_current_row[0], i]]

        A[i] = A[i] / A[i, i]

        for j in range(n):
            if i != j:
                A[j] -= A[i] * A[j, i]
    return A

def find_pivot_columns(A):
    n, m = A.shape
    pivot_columns = []
    for i in range(n):
        nonzero = np.nonzero(A[i, :])[0]
        if len(nonzero) != 0:
            pivot_columns.append(nonzero[0])
    return pivot_columns

def matrix_image(A):
    # Find the RREF of the matrix
    Arref = rref(A)
    # Find the pivot columns
    pivot_columns = find_pivot_columns(Arref)
    # Extract the pivot columns from the original matrix
    image_basis = A[:, pivot_columns]
    return image_basis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

六月五日

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值