以下是一份简单的 SKlearn 基础教程:
该文章由作者老程提出,仅供参考
一、安装 SKlearn
您可以使用 pip 命令来安装 SKlearn:
pip install scikit-learn
二、数据准备
SKlearn 通常需要您将数据整理为特征矩阵(X)和目标向量(y)。
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
三、数据预处理
- 标准化:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
- 归一化:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_normalized = scaler.fit_transform(X)
四、模型训练
- 线性回归:
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
- 决策树:
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X, y)
五、模型评估
- 准确率:
from sklearn.metrics import accuracy_score
y_pred = model.predict(X)
accuracy = accuracy_score(y, y_pred)
print("准确率:", accuracy)
- 均方误差(MSE):
from sklearn.metrics import mean_squared_error
y_pred = model.predict(X)
mse = mean_squared_error(y, y_pred)
print("均方误差:", mse)
下面是更为基础教程:
SKLEARN 基础教