模型持久化:使用sklearn保存与加载模型的终极指南

模型持久化:使用sklearn保存与加载模型的终极指南

在机器学习工作流程中,一旦模型被训练完成,接下来的常见需求便是将模型持久化存储,以便于后续的部署、评估或进一步分析。scikit-learn(简称sklearn),作为Python中广泛使用的机器学习库,提供了简便的模型保存和加载机制。本文将详细介绍如何使用sklearn进行模型的保存和加载,并提供实际的代码示例。

1. 为什么需要模型保存和加载

模型保存和加载对于以下场景至关重要:

  • 模型部署:将训练好的模型部署到生产环境中。
  • 模型共享:与他人共享模型以进行进一步分析或应用。
  • 模型更新:在新数据上更新模型,而无需从头开始训练。
  • 实验重现:保存实验设置,便于结果的重现和验证。
2. 使用sklearn保存模型

sklearn提供了joblib库来保存模型。joblib能够序列化模型对象,并保存到磁盘上。

from sklearn.externals import joblib

# 假设model是一个已经训练好的sklearn模型
model = ...  # 此处应有模型训练代码

# 保存模型到文件
jobl
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

原机小子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值