2024年最全高并发场景下缓存+数据库双写不一致问题分析与解决方案设计,美团前端几面

最后

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

大厂面试问深度,小厂面试问广度,如果有同学想进大厂深造一定要有一个方向精通的惊艳到面试官,还要平时遇到问题后思考一下问题的本质,找方法解决是一个方面,看到问题本质是另一个方面。还有大家一定要有目标,我在很久之前就想着以后一定要去大厂,然后默默努力,每天看一些大佬们的文章,总是觉得只有再学深入一点才有机会,所以才有恒心一直学下去。

问题

如果是先修改数据库,再删除缓存的方案,会有问题,试想,如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,出现数据不一致的情况。

解决思路

反过来,先删除缓存,再修改数据库。读缓存读不到,查数据库更新缓存的时候就拿到了最新的库存数据。如果删除缓存成功了,而修改数据库失败了,那么数据库中依旧是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,则读数据库中旧数据,然后更新到缓存中。

2.比较复杂的数据不一致问题分析

当库存数据发生了变更,我们先删除了缓存,然后要去修改数据库。

设想一下,如果这个时候修改数据库的操作还没来及完成,突然一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中。

数据变更的操作完成后数据库的库存被修改成了新值,但缓存中又变成了旧数据。那么这个时候是不是还会出现缓存和数据库不一致的情况?

3.为何上亿流量高并发时会出现该问题?

上述问题,只有在对一个数据在并发的进行读写的时候,才可能会出现。

其实如果并发量很低的话,特别是读并发很低,每天访问量就1万次,那么很少的情况下,会出现刚才描述的那种不一致的场景。

但是问题是,高并发了以后,问题是很多的。如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况。

怎么解决?

4.更新与读取操作进行异步串行化

这里说一种解决方案。

不就是还没更新数据库的就查数据库读到旧数据吗?不就是因为读在更新前面了吗?那我就让你排队执行呗。

4.1 异步串行化

我在系统内部维护n个内存队列,更新数据的时候,根据数据的唯一标识,将该操作路由之后,发送到其中一个jvm内部的内存队列中(对同一数据的请求发送到同一个队列)。读取数据的时候,如果发现数据不在缓存中,并且此时队列里有更新库存的操作,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也将发送到同一个jvm内部的内存队列中。然后每个队列对应一个工作线程,每个工作线程串行地拿到对应的操作,然后一条一条的执行。

这样的话,一个数据变更的操作,先执行删除缓存,然后再去更新数据库,但是还没完成更新的时候,如果此时一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,排在刚才更新库的操作之后,然后同步等待缓存更新完成,再读库。

4.2 读操作去重

多个读库更新缓存的请求串在同一个队列中是没意义的,因此可以做过滤,如果发现队列中已经有了该数据的更新缓存的请求了,那么就不用再放进去了,直接等待前面的更新操作请求完成即可,待那个队列对应的工作线程完成了上一个操作(数据库的修改)之后,才会去执行下一个操作(读库更新缓存),此时会从数据库中读取最新的值,然后写入缓存中。

如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回; 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。(返回旧值不是又导致缓存和数据库不一致了么?那至少可以减少这个情况发生,因为等待超时也不是每次都是,几率很小吧。这里我想的是,如果超时了就直接读旧值,这时候仅仅是读库后返回而不放缓存)

5.高并发的场景下,该方案要注意的问题

高并发的场景下,该解决方案其实还是有一些问题需要特别注意的。

5.1 读请求长时阻塞

由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回。

该解决方案,最大的风险点在于,数据更新很频繁的情况下导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库取到了旧值。所以,务必通过一些模拟真实的测试,看看更新数据频繁的场景下是怎样的。

另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,确定一个实例中创建多少个内存队列,且可能需要部署多个服务,每个服务分摊一些数据的更新操作。

如果一个内存队列里积压100个商品的库存修改操作,每个库存修改操作要耗费10ms去完成,那么最后一个商品的读请求,可能等待10 * 100 = 1000ms = 1s后,才能得到数据。

这个时候就导致读请求的长时阻塞。

一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会hang多少时间。如果读请求在200ms返回,而且你计算过后,哪怕是最繁忙的时候,积压10个更新操作,最多等待200ms,那还可以的。

如果一个内存队列可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少。

Tips:
其实根据之前的项目经验,一般来说数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的。

针对读高并发,读缓存架构的项目,一般写请求相对读来说,是非常非常少的,每秒的QPS能到几百就不错了。

假如一秒500的写操作,可以看成5份,每200ms就100个写操作。对于单机器,如果又20个内存队列,每个内存队列,可能就积压5个写操作,每个写操作性能测试后,一般在20ms左右就完成。

那么针对每个内存队列中的数据的读请求,也就最多hang一会儿,200ms以内肯定能返回了。

假如写QPS扩大10倍,但是经过刚才的测算,就知道,单机支撑写QPS几百没问题,那么就扩容机器,扩容10倍的机器,10台机器,每个机器20个队列,200个队列。

大部分的情况下,应该是这样的:大量的读请求过来,都是直接走缓存取到数据的。少量情况下,可能遇到读和数据更新冲突的情况。如上所述,那么此时更新操作如果先入队列,之后可能会瞬间来了对这个数据大量的读请求,但是因为做了去重的优化,所以也就一个更新缓存的操作跟在它后面。

等数据更新完了,读请求触发的缓存更新操作也完成,然后临时等待的读请求全部可以读到缓存中的数据。

5.2 读请求并发量过高

这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时hang在服务上,看服务能不能抗的住,需要多少机器才能抗住最大的极限情况的峰值。

但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大。

最后

好了,这就是整理的前端从入门到放弃的学习笔记,还有很多没有整理到,我也算是边学边去整理,后续还会慢慢完善,这些相信够你学一阵子了。

做程序员,做前端工程师,真的是一个学习就会有回报的职业,不看出身高低,不看学历强弱,只要你的技术达到应有的水准,就能够得到对应的回报。

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

学习从来没有一蹴而就,都是持之以恒的,正所谓活到老学到老,真正懂得学习的人,才不会被这个时代的洪流所淘汰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值