Yum常用命令及Yum中文手册(1)

List of Commands:

install:Install a package or packages on your system

update:Update a package or packages on your system

remove:移出某个软件,后跟软件名称

search:Search package details for the given string 搜索某个软件或重要关键字

list:List a package or groups of packages列出yum所管理的软件名称与版本,类似于rpm –qa

info:Display details about a package or group of packages,类似于rpm –qai

clean:Remove cached data 下载文件被放置在/var/cache/yum中,可以使用clean清除。

check-update:Check for available package updates

Groupinfo:Display details about a package group

groupinstall   Install the packages in a group on your system

grouplist:List available package groups

**groupremove:**Remove the packages in a group from your system

groupupdate:升级整个软件群组

help:Display a helpful usage message

Deplist:List a package’s dependencies    列出软件包的依赖关系,在使用本地源软件包进行安装时,可以查看依赖关系

**Downgrade:**downgrade a package

**Erase:**Remove a package or packages from your system

localinstall:Install a local RPM安装本地的rpm软件包

**makecache:**Generate the metadata cache 生成数据缓存

provides:Find what package provides the given value 找到包提供的给定值

reinstall:reinstall a package 重装软件包

repolist:Display the configured software repositories

resolvedep:Determine which package provides the given dependency

shell:Run an interactive yum shell

upgrade:Update packages taking obsoletes into account

options

**-y:**answer yes for all questions当yum询问用户意见时,主动回答yes不需由键盘输入

-installroot=[path]:set install root安装在其他的路径,而不再当前目录树的架构中

-h --help:show this help message and exit

-t --tolerant:be tolerant of errors

-C:run entirely from cache, don’t update cache

-c:[config file]config file location

-R  [minutes]         maximum command wait time

-d  [debug level]     debugging output level

-showduplicates      show duplicates, in repos, in list/search commands

-e  [error level]     error output level

-q, --quiet           quiet operation

-v, --verbose         verbose operation

-version             show Yum version and exit

-enablerepo=[repo] enable one or more repositories (wildcards allowed)

-disablerepo=[repo] disable one or more repositories (wildcards allowed)

-x[package], --exclude=[package]exclude package(s) by name or glob

-disableexcludes=[repo]disable exclude from main, for a repo or for everything

-obsoletes:enable obsoletes processing during updates

-noplugins:disable Yum plugins

-nogpgcheck:disable gpg signature checking

学习福利

【Android 详细知识点思维脑图(技能树)】

其实Android开发的知识点就那么多,面试问来问去还是那么点东西。所以面试没有其他的诀窍,只看你对这些知识点准备的充分程度。so,出去面试时先看看自己复习到了哪个阶段就好。

虽然 Android 没有前几年火热了,已经过去了会四大组件就能找到高薪职位的时代了。这只能说明 Android 中级以下的岗位饱和了,现在高级工程师还是比较缺少的,很多高级职位给的薪资真的特别高(钱多也不一定能找到合适的),所以努力让自己成为高级工程师才是最重要的。

这里附上上述的面试题相关的几十套字节跳动,京东,小米,腾讯、头条、阿里、美团等公司19年的面试题。把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节。

由于篇幅有限,这里以图片的形式给大家展示一小部分。

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!
]

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!

<think>好的,用户想了解RCAB模块在图像超分辨率任务中的作用和原理。首先,我需要回忆一下RCAB的相关知识。RCAB全称是Residual Channel Attention Block,应该是在残差块的基础上加入了通道注意力机制。这通常用于提升超分辨率模型的性能。 记得残差块(Residual Block)在ResNet中被广泛使用,通过跳跃连接缓解梯度消失的问题,帮助训练更深的网络。而通道注意力机制,比如SENet中的Squeeze-and-Excitation模块,能够自动学习各个通道的重要性,增强有用的特征,抑制不重要的。RCAB可能结合了这两者。 接下来,需要确认RCAB的具体结构。根据常见的设计,RCAB可能包含多个卷积层,然后是通道注意力模块,最后通过残差连接相加。这样可以在提取特征的同时,动态调整各通道的权重,让网络更关注重要的信息。 在超分辨率任务中,RCAB的作用应该是增强高频细节的恢复,比如边缘和纹理,这对于提升图像清晰度至关重要。同时,通道注意力机制能有效利用通道间的依赖关系,优化特征表达,从而提升重建质量。 应用场景方面,RCAB可能被用于如EDSR、RCAN等超分辨率模型中。这些模型通常堆叠多个RCAB模块,通过深层的网络结构逐步恢复高分辨率图像。特别是在处理大倍数超分辨率(如4x、8x)时,RCAB能帮助保持细节,减少模糊。 还需要考虑RCAB的优势。比如,通过残差学习简化了优化过程,而通道注意力则增强了特征的区分能力。这可能使得模型在计算资源有限的情况下仍能保持高效,同时提升性能。 需要验证这些信息是否正确。参考用户提供的资料,引用[1]提到多尺度卷积和特征融合,引用[2]提到信息交互和注意力机制。虽然没有直接提到RCAB,但通道注意力属于注意力机制的一种,符合引用中的信息。因此可以推断RCAB的应用场景这些模块类似,用于特征提取和优化。 总结来说,RCAB的作用是通过残差结构和通道注意力机制,有效提取并优化特征,提升超分辨率重建的质量。应用场景包括各种基于深度学习的超分辨率模型,特别是在需要恢复细节和高效利用特征时。</think>RCAB(Residual Channel Attention Block)模块在图像超分辨率任务中主要用于**增强特征表达能力并优化高频细节恢复**,其核心原理是通过残差学习通道注意力机制的结合,动态调整特征通道的重要性权重。 ### 作用原理分步说明: 1. **残差学习框架** RCAB基于残差块(Residual Block)设计,包含两个卷积层和激活函数,通过跳跃连接(Skip Connection)将输入输出相加。这种方式缓解了梯度消失问题,支持更深的网络训练,公式为: $$F(x) = H(x) + x$$ 其中$H(x)$为残差函数,$x$为输入特征。 2. **通道注意力机制** 在残差块后引入通道注意力模块(Channel Attention Module),通过全局平均池化(Global Average Pooling)统计通道特征,并利用全连接层生成通道权重: $$w_c = \sigma(W_2 \cdot \delta(W_1 \cdot \text{GAP}(x)))$$ 其中$\sigma$为Sigmoid函数,$\delta$为ReLU,$W_1$和$W_2$为全连接层参数。最终输出特征为各通道加权后的结果: $$x' = w_c \cdot x$$ 该机制使网络自动关注对重建更重要的特征通道[^1]。 3. **多尺度特征融合** RCAB常多尺度特征提取模块结合(如引用[1]中提到的多尺度卷积层),通过不同感受野的卷积核捕获低频和高频信息,再利用通道注意力筛选关键特征,减少冗余计算,提升重建效率。 ### 应用场景 - **单图像超分辨率(SISR)**:如RCAN(Residual Channel Attention Networks)模型,通过堆叠多个RCAB模块恢复高分辨率图像的细节[^2]。 - **多模态超分辨率融合**:在红外可见光图像融合任务中,RCAB用于增强跨模态特征的表征能力,保留边缘和纹理信息[^1]。 - **轻量超分辨率网络**:由于通道注意力可抑制无效特征,RCAB在减少计算量的同时保持性能,适用于移动端部署。 ### 示例模型结构 ```python class RCAB(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, 3, padding=1) self.conv2 = nn.Conv2d(channels, channels, 3, padding=1) self.ca = ChannelAttention(channels) # 通道注意力模块 def forward(self, x): res = self.conv1(x) res = F.relu(res) res = self.conv2(res) res = self.ca(res) # 通道加权 return x + res # 残差连接 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值