一.什么是互斥量?
在多数情况下,互斥型信号量和二值型信号量非常相似,但是从功能上二值型信号量用于同步, 而互斥型信号量用于资源保护。
互斥型信号量和二值型信号量还有一个最大的区别,互斥型信号量可以有效解决优先级反转现 象。
二.什么是优先级翻转?
系统中有3个不同优先级的任务H/M/L,最高优先级任务H和最低优先级任务L通过 信号量机制,共享资源。目前任务L占有资源,锁定了信号量,Task H运行后将被阻塞,直到Task L释放信号量后,Task H才能够退出阻塞状态继续运行。但是Task H在等待Task L释放信号量的过 程中,中等优先级任务M抢占了任务L,从而延迟了信号量的释放时间,导致Task H阻塞了更长时 间,这种现象称为优先级倒置或反转。
优先级继承:当一个互斥信号量正在被一个低优先级的任务持有时, 如果此时有个高优先级的任 务也尝试获取这个互斥信号量,那么这个高优先级的任务就会被阻塞。不过这个高优先级的任务 会将低优先级任务的优先级提升到与自己相同的优先级。
优先级继承并不能完全的消除优先级翻转的问题,它只是尽可能的降低优先级翻转带来的影响。
三.互斥量相关 API 函数
互斥信号量不能用于中断服务函数中!
参数:
无
返回值:
成功,返回对应互斥量的句柄; 失败,返回 NULL 。
四.实操
1.实验需求
1)演示优先级翻转
2)使用互斥量优化优先级翻转问题
2.cubeMX配置
1)演示优先级翻转
创建3个任务
创建二值信号量
2)使用互斥量优化优先级翻转问题
3.代码实现
/* USER CODE BEGIN Header */
/**
******************************************************************************
* File Name : freertos.c
* Description : Code for freertos applications
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "FreeRTOS.h"
#include "task.h"
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN Variables */
/* USER CODE END Variables */
osThreadId TaskHHandle;
osThreadId TaskMHandle;
osThreadId TaskLHandle;
osMutexId myMutexHandle;
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN FunctionPrototypes */
/* USER CODE END FunctionPrototypes */
void StartTaskH(void const * argument);
void StartTaskM(void const * argument);
void StartTaskL(void const * argument);
void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */
/* GetIdleTaskMemory prototype (linked to static allocation support) */
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize );
/* USER CODE BEGIN GET_IDLE_TASK_MEMORY */
static StaticTask_t xIdleTaskTCBBuffer;
static StackType_t xIdleStack[configMINIMAL_STACK_SIZE];
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
{
*ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer;
*ppxIdleTaskStackBuffer = &xIdleStack[0];
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
/* place for user code */
}
/* USER CODE END GET_IDLE_TASK_MEMORY */
/**
* @brief FreeRTOS initialization
* @param None
* @retval None
*/
void MX_FREERTOS_Init(void) {
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Create the mutex(es) */
/* definition and creation of myMutex */
osMutexDef(myMutex);
myMutexHandle = osMutexCreate(osMutex(myMutex));
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of TaskH */
osThreadDef(TaskH, StartTaskH, osPriorityAboveNormal, 0, 128);
TaskHHandle = osThreadCreate(osThread(TaskH), NULL);
/* definition and creation of TaskM */
osThreadDef(TaskM, StartTaskM, osPriorityNormal, 0, 128);
TaskMHandle = osThreadCreate(osThread(TaskM), NULL);
/* definition and creation of TaskL */
osThreadDef(TaskL, StartTaskL, osPriorityBelowNormal, 0, 128);
TaskLHandle = osThreadCreate(osThread(TaskL), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
}
/* USER CODE BEGIN Header_StartTaskH */
/**
* @brief Function implementing the TaskH thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTaskH */
void StartTaskH(void const * argument)
{
/* USER CODE BEGIN StartTaskH */
/* Infinite loop */
for(;;)
{
xSemaphoreTake(myMutexHandle,portMAX_DELAY);
printf("TaskH:我开始进入厕所...\r\n");
HAL_Delay(1000);
printf("TaskH:我上完厕所了...\r\n");
xSemaphoreGive(myMutexHandle);
osDelay(1000);
}
/* USER CODE END StartTaskH */
}
/* USER CODE BEGIN Header_StartTaskM */
/**
* @brief Function implementing the TaskM thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTaskM */
void StartTaskM(void const * argument)
{
/* USER CODE BEGIN StartTaskM */
/* Infinite loop */
for(;;)
{
printf("TaskM:占用CPU资源...\r\n");
osDelay(1000);
}
/* USER CODE END StartTaskM */
}
/* USER CODE BEGIN Header_StartTaskL */
/**
* @brief Function implementing the TaskL thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTaskL */
void StartTaskL(void const * argument)
{
/* USER CODE BEGIN StartTaskL */
/* Infinite loop */
for(;;)
{
xSemaphoreTake(myMutexHandle,portMAX_DELAY);
printf("TaskL:我开始进入厕所...\r\n");
HAL_Delay(3000);
printf("TaskL:我上完厕所了...\r\n");
xSemaphoreGive(myMutexHandle);
osDelay(1000);
}
/* USER CODE END StartTaskL */
}
/* Private application code --------------------------------------------------*/
/* USER CODE BEGIN Application */
/* USER CODE END Application */