在 C 语言中实现 灰度梯度计算 和 差分编码 结合的光源追踪算法,涉及图像处理、矩阵操作以及一些常用的图像处理技巧。以下是如何用 C 语言编写这种算法的详细步骤与伪代码实现。
1. 准备工作
首先,确保你有一个图像处理库,如 stb_image 和 stb_image_write(轻量级的图像加载和保存库),它们支持读取和写入常见格式的图像文件。
2. 项目结构
你可以将程序分为几个部分来实现:
- 图像加载与保存
- 灰度转换
- 灰度梯度计算(Sobel 算子)
- 差分编码
- 阈值化与光源位置追踪
- 图像平滑与后处理
3. 图像处理代码实现
3.1 图像加载与保存
首先,使用 stb_image 来加载图像,并转换为灰度图像。
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
unsigned char* load_image(const char* filename, int* width, int* height, int* channels) {
unsigned char* img = stbi_load(filename, width, height, channels, 0);
if (!img) {
printf("Error loading image\n");
exit(1);
}
return img;
}
void save_image(const char* filename, unsigned char* img, int width, int height, int channels) {
stbi_write_png(filename, width, height, channels, img, width * channels);
}
3.2 灰度转换
将彩色图像转换为灰度图像。每个像素的灰度值是 RGB 分量的加权平均值。
void rgb_to_grayscale(unsigned char* img, unsigned char* gray_img, int width, int height, int channels) {
for (int i = 0; i < width * height; i++) {
int r = img[i * channels];
int g = img[i * channels + 1];
int b = img[i * channels + 2];
gray_img[i] = (unsigned char)(0.299 * r + 0.587 * g + 0.114 * b);
}
}
3.3 灰度梯度计算(Sobel 算子)
使用 Sobel 算子 来计算图像的 水平 和 垂直 梯度。Sobel 算子有两个 3x3 的卷积核,用于计算每个像素点的梯度。
void sobel_operator(unsigned char* gray_img, int* grad_x, int* grad_y, int width, int height) {
int sobel_x[3][3] = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}};
int sobel_y[3][3] = {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}};
for (int y = 1; y < height - 1; y++) {
for (int x = 1; x < width - 1; x++) {
int gx = 0, gy = 0;
// 计算水平梯度(grad_x)和垂直梯度(grad_y)
for (int j = -1; j <= 1; j++) {
for (int i = -1; i <= 1; i++) {
gx += gray_img[(y + j) * width + (x + i)] * sobel_x[j + 1][i + 1];
gy += gray_img[(y + j) * width + (x + i)] * sobel_y[j + 1][i + 1];
}
}
grad_x[y * width + x] = gx;
grad_y[y * width + x] = gy;
}
}
}
3.4 计算梯度大小
梯度大小通过 Pythagorean theorem 计算:
void compute_gradient_magnitude(int* grad_x, int* grad_y, unsigned char* grad_img, int width, int height) {
for (int i = 0; i < width * height; i++) {
int gx = grad_x[i];
int gy = grad_y[i];
grad_img[i] = (unsigned char) sqrt(gx * gx + gy * gy);
}
}
3.5 差分编码
对于连续帧之间的差分编码,首先计算当前帧和前一帧的像素差异:
void calculate_frame_difference(unsigned char* current_frame, unsigned char* previous_frame, unsigned char* diff_frame, int width, int height) {
for (int i = 0; i < width * height; i++) {
diff_frame[i] = abs(current_frame[i] - previous_frame[i]);
}
}
3.6 阈值化与光源检测
为了提取重要区域,可以对梯度图和差分图进行 阈值化,只保留变化较大的部分。
void apply_threshold(unsigned char* img, unsigned char* thresholded_img, int width, int height, unsigned char threshold) {
for (int i = 0; i < width * height; i++) {
thresholded_img[i] = (img[i] > threshold) ? 255 : 0;
}
}
3.7 融合梯度图和差分图
将 灰度梯度图 和 差分图 相结合,以便更准确地追踪光源。
void combine_gradient_and_diff(unsigned char* grad_img, unsigned char* diff_img, unsigned char* combined_img, int width, int height) {
for (int i = 0; i < width * height; i++) {
combined_img[i] = grad_img[i] && diff_img[i] ? 255 : 0; // 取交集
}
}
3.8 光源追踪
基于 阈值化结果 和 连通区域分析,可以找到光源的位置。这里简单通过像素值的聚类来判断光源位置:
void track_light_source(unsigned char* combined_img, int width, int height) {
// 可以通过扫描 combined_img 中的值来定位光源
// 这里简化为找到最大灰度值的位置
int max_value = 0;
int light_source_x = -1, light_source_y = -1;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int idx = y * width + x;
if (combined_img[idx] > max_value) {
max_value = combined_img[idx];
light_source_x = x;
light_source_y = y;
}
}
}
printf("Light source detected at: (%d, %d)\n", light_source_x, light_source_y);
}
4. 整合和主函数
最后,将所有功能整合到一个主函数中,进行图像加载、处理、光源追踪和结果保存。
int main() {
int width, height, channels;
unsigned char* img = load_image("input.png", &width, &height, &channels);
unsigned char* gray_img = (unsigned char*)malloc(width * height);
unsigned char* grad_img = (unsigned char*)malloc(width * height);
unsigned char* diff_img = (unsigned char*)malloc(width * height);
unsigned char* combined_img = (unsigned char*)malloc(width * height);
// 将图像转换为灰度
rgb_to_grayscale(img, gray_img, width, height, channels);
// 计算梯度图
int* grad_x = (int*)malloc(width * height * sizeof(int));
int* grad_y = (int*)malloc(width * height * sizeof(int));
sobel_operator(gray_img, grad_x, grad_y, width, height);
compute_gradient_magnitude(grad_x, grad_y, grad_img, width, height);
// 假设有前一帧的图像
unsigned char* prev_frame = (unsigned char*)malloc(width * height);
calculate_frame_difference(gray_img, prev_frame, diff_img, width, height);
// 阈值化梯度图与差分图
unsigned char threshold = 100; // 阈值可以调整
unsigned char* thresholded_grad = (unsigned char*)malloc(width * height);
unsigned char* thresholded_diff = (unsigned char*)malloc(width * height);
apply_threshold(grad_img, thresholded_grad, width, height, threshold);
apply_threshold(diff_img, thresholded_diff, width, height, threshold);
// 结合两者结果
combine_gradient_and_diff(threshold