文章目录
前言:STM32G431RBT6实现嵌入式组第十五届题目解析+源码,本文默认读者具备基础的stm32知识。文章末尾附有第十五届题目。
1.题目解析
1.1 分而治之,藕断丝连
还是那句话,将不同模块进行封装,通过变量进行模块间的合作。
函数将模块分而治之,变量使模块间藕断丝连。
1.2 模块化思维导图
下图根据题目梳理。还是使用思维导图。
1.3 模块解析
1.3.1 KEY模块
还是控制按一次处理一次。老朋友了我们就不多说了,题目限制了按键消抖和单次处理,所以我们要加上消抖,和前几届的一样。
正常按键逻辑:
开始按下—>按下—>释放;
但是题目要求得按一次处理一次,根据代码逻辑加了一种等待释放状态
根据机械按键的特性开始和结束都得消抖,加上按一次执行一次,所以我们的处理逻辑是:
开始按下—>按下消抖—>短按—>等待弹起—>长按—>弹起—>弹起消抖—>释放;
为了实现按一次执行一次,中间加了一个等待弹起状态(key_state_gain()函数获取到按键状态,key_state_set()设置按键对应按键涉及标志位,下一次进入到key_state_gain()函数中,按键状态就变成了等待弹起状态,这就保证了,短按长按只执行key_state_set()一次)
这里主要说逻辑,具体看源码
if(按键按下){
if(是否是释放状态){ //开始按下
进入消抖状态,开始消抖计时
}
else if(是否是消抖状态){ //按下消抖
if(当前时间-消抖计时>=消抖时长){
消抖完成,进入按下状态
}
}
else if(是否是短按状态 || 是否是长按状态){ //等待弹起状态
等待释放状态
记录长按1s开始时间
}
else if(是否是等待状态){ //长按实现
if(时间达到1s) 长按状态
}
}
else{//没有按下
if(是否是等待释放或者按下状态){ //弹起
进入消抖状态,开始消抖计时
}
else if(是否是消抖状态){ //弹起消抖
if(当前时间-消抖计时>=消抖时长){
消抖完成,按键释放
}
}
}
1.3.2 LED模块
ld1:数据界面亮,否则灭;
ld2:fA>PH,亮,否则灭;
ld3:fA>PH,亮,否则灭;
ld4:NDA>=3||NDB>=3亮,否则灭;
其他保持灭。
解决办法,设置一个标志位代表ld1~ld8,改变对应位的的值,再将标志位写入ODR寄存器中来控制led的亮灭。
具体实现看源码
1.3.3 LCD模块
lcd显示三个界面,注意首次切换的时候得清屏。
根据B1进行三个界面的切换;
状态0:DATA;
状态1:PARA;
状态1:RECD。
具体实现看源码
1.3.4 TIM模块
TIM2:799, 9999,0.1时基;
TIM3,chn2: 19, 39999,采集400Hz~20KHz之间的频率PB4;
TIM8,chn2: 19, 39999,采集400Hz~20KHz之间的频率PA15。
PSC和ARR计算公式(计算周期就是频率的倒数):
2.源码
我所有的实现都在main.c文件中。
2.1cubemx配置
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "stdlib.h"
#include "lcd.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
enum{ //按键的几种状态枚举
key_released = 0U,
key_reduction,
key_short_pressed,
key_short_wait_released, //目的短按执行一次
key_long_pressed,
key_long_wait_released, //目的长按执行一次
};
typedef struct{ //参数界面三个变量
int PD;
int PH;
int PX;
}para_t;
para_t para = {1000, 5000, 0};
typedef struct{ //记录界面四个变量
int NDA;
int NDB;
int NHA;
int NHB;
}recd_t;
recd_t recd = {0};
typedef struct{ //输入捕获计算频率
uint32_t new_val; //记录当前CCR的值
uint32_t old_val; //记录上一次CCR的值
float freq; //0.1s更新一次频率
float update_freq; //每次捕获到的频率
}freq_t;
freq_t freqA = {0}, freqB = {0};
/*
key_state: 按键状态
key_volt: 按键电平
*/
uint8_t key_state[4] = {0}, key_volt[4] = {0};
/*
key_redu: 按键消抖时间戳
key_1s_tim: 按键长按时间戳
A_100ms_t: A频率100ms更新时间戳
B_100ms_t: B频率100ms更新时间戳
lcd_100ms_tim: lcd100ms刷新时间戳
*/
uint32_t key_redu = 0, key_1s_tim = 0, A_100ms_t = 0, B_100ms_t = 0, lcd_100ms_tim = 0;
/*
para_conv_flag: 参数切换标志
lcd_conv_flag: lcd界面切换标志
FT_conv_flag: 频率周期切换标志
lcd_clear_flag: lcd界面切换清屏标志
*/
uint8_t para_conv_flag = 0, lcd_conv_flag = 0, FT_conv_flag = 0, lcd_clear_flag = 0;
//lcd显示
char lcd_str[21] = {0};
/*
获取按键状态标志
释放-->按下消抖-->短按-->短按等待-->长按-->长按等待-->弹起消抖-->释放
*/
void gain_key_state()
{
key_volt[0] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
key_volt[1] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
key_volt[2] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
key_volt[3] = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
for(uint8_t i=0;i<4;i++)
{
if(key_volt[i] == 0)
{
if(key_state[i] == key_released){
key_redu = HAL_GetTick();
key_state[i] = key_reduction;
}
else if(key_state[i] == key_reduction){
if(HAL_GetTick() - key_redu>=10){
key_state[i] = key_short_pressed;
}
}
else if(key_state[i] == key_short_pressed){
key_1s_tim = HAL_GetTick();
key_state[i] = key_short_wait_released;
}
else if(key_state[i] == key_short_wait_released){
if(HAL_GetTick()-key_1s_tim >=1000){
key_state[i] = key_long_pressed;
}
}
else if(key_state[i] == key_long_pressed){
key_state[i] = key_long_wait_released;
}
}
else{
if(key_state[i] != key_reduction && key_state[i] != key_released) {
key_redu = HAL_GetTick();
key_state[i] = key_reduction;
}
else if(key_state[i] == key_reduction){
if(HAL_GetTick() - key_redu>=10){
key_state[i] = key_released;
}
}
}
}
}
//根据按键状态设置对应标志
void key_process()
{
if(key_state[0] == key_short_pressed){ //B1参数累加
if(para_conv_flag == 0){
para.PD = para.PD < 1000 ? para.PD+100 : 1000;
}
else if(para_conv_flag == 1){
para.PH = para.PH < 10000 ? para.PH+100 : 10000;
}
else{
para.PX = para.PX < 1000 ? para.PX+100 : 1000;
}
}
else if(key_state[1] == key_short_pressed){ //B1参数累减
if(para_conv_flag == 0){
para.PD = para.PD > 100 ? para.PD-100 : 100;
}
else if(para_conv_flag == 1){
para.PH = para.PH > 1000 ? para.PH-100 : 1000;
}
else{
para.PX = para.PX > -1000 ? para.PX-100 : -1000;
}
}
else if(key_state[2] == key_short_pressed){
if(lcd_conv_flag == 0){ //数据界面FT转换
FT_conv_flag ^= 1;
}
else if(lcd_conv_flag == 1){ //参数界面参数转换
para_conv_flag = para_conv_flag !=2 ? para_conv_flag+1 : 0;
}
}
else if(key_state[2] == key_long_pressed){ //B3长按记录界面参数清0
recd.NDA = 0; recd.NDB = 0; recd.NHA = 0; recd.NHB = 0;
}
else if(key_state[3] == key_short_pressed){ //B4界面切换,对应回到界面默认状态
lcd_conv_flag = lcd_conv_flag !=2 ? lcd_conv_flag+1 : 0;
para_conv_flag = 0;
FT_conv_flag = 0;
}
}
void lcd_process()
{
switch(lcd_conv_flag)
{
case 0: //数据界面
if(lcd_clear_flag == 2){
LCD_Clear(Black);
lcd_clear_flag = 0;
}
LCD_DisplayStringLine(Line1, (uint8_t*)" DATA ");
if(FT_conv_flag == 0){
if(freqA.freq < 0) sprintf(lcd_str, " A=NULL ");
else if(freqA.freq > 1000) sprintf(lcd_str, " A=%.2fKHz ", freqA.freq/1000.0);
else sprintf(lcd_str, " A=%dHz ", (int)freqA.freq);
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
if(freqB.freq < 0) sprintf(lcd_str," B=NULL ");
else if(freqB.freq > 1000) sprintf(lcd_str, " B=%.2fKHz ", freqB.freq/1000.0);
else sprintf(lcd_str, " B=%dHz ", (int)freqB.freq);
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
}
else{
if(freqA.freq < 0) sprintf(lcd_str, " A=NULL ");
else if(1000.0/freqA.freq > 1) sprintf(lcd_str, " A=%.2fmS ", 1000.0/freqA.freq);
else sprintf(lcd_str, " A=%duS ", 1000000/(int)freqA.freq);
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
if(freqB.freq < 0) sprintf(lcd_str, " B=NULL ");
else if(1000.0/freqB.freq > 1) sprintf(lcd_str, " B=%.2fmS ", 1000.0/freqB.freq);
else sprintf(lcd_str, " B=%duS ", 1000000/(int)freqB.freq);
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
}
break;
case 1: //参数界面
if(lcd_clear_flag == 0){
LCD_Clear(Black);
lcd_clear_flag = 1;
}
LCD_DisplayStringLine(Line1, (uint8_t*)" PARA ");
sprintf(lcd_str, " PD=%dHz ", para.PD);
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
sprintf(lcd_str, " PH=%dHz ", para.PH);
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
sprintf(lcd_str, " PX=%dHz ", para.PX);
LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
break;
case 2: //记录界面
if(lcd_clear_flag == 1){
LCD_Clear(Black);
lcd_clear_flag = 2;
}
LCD_DisplayStringLine(Line1, (uint8_t*)" RECD ");
sprintf(lcd_str, " NDA=%u ", recd.NDA);
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
sprintf(lcd_str, " NDB=%u ", recd.NDB);
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
sprintf(lcd_str, " NHA=%u ", recd.NHA);
LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
sprintf(lcd_str, " NHB=%u ", recd.NHB);
LCD_DisplayStringLine(Line6, (uint8_t*)lcd_str);
break;
}
}
/*
A_3s_data: A通道3s时间窗口记录数据
B_3s_data: B通道3s时间窗口记录数据
*/
float A_3s_data[30] = {0.0}, B_3s_data[30] = {0.0};
uint8_t A_cnt = 0, B_cnt = 0; //记录采集数据
//对应数组中添加数据
void add_freq(float *arr, float freq, uint8_t *cnt)
{
arr[*cnt] = freq;
(*cnt)++;
}
//寻找最大最小值
uint8_t find_min_max(float *arr)
{
float min = arr[0], max = arr[0];
for(uint8_t i=1;i<30;i++){
if(arr[i] < min) min = arr[i];
else if(arr[i] > max) max = arr[i];
}
if((int)(max - min) > para.PD) return 1;
return 0;
}
//A/B通道突变记录一次限制标志
uint8_t A_PH_flag = 0, B_PH_flag = 0;
void recd_process()
{
if((int)freqA.freq > para.PH && A_PH_flag == 0){
A_PH_flag = 1;
recd.NHA++;
}
else if((int)freqA.freq < para.PH) A_PH_flag = 0;
if((int)freqB.freq > para.PH && B_PH_flag == 0){
B_PH_flag = 1;
recd.NHB++;
}
else if((int)freqB.freq < para.PH) B_PH_flag = 0;
if(A_cnt == 30){
A_cnt = 0;
if(find_min_max(A_3s_data)) recd.NDA++;
for(uint8_t i=0;i<30;i++){
A_3s_data[i] = 0.0;
}
}
if(B_cnt == 30){
B_cnt = 0;
if(find_min_max(B_3s_data)) recd.NDB++;
for(uint8_t i=0;i<30;i++){
B_3s_data[i] = 0.0;
}
}
}
//led状态
uint8_t led_flag = 0;
//led处理
void led_process()
{
if(lcd_conv_flag == 0) led_flag = 1;
else led_flag = 0;
if(freqA.freq > para.PH) led_flag += 1<<1;
if(freqB.freq > para.PH) led_flag += 1<<2;
if(recd.NDA >= 3 || recd.NDB >= 3) led_flag += 1<<7;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, 1);
GPIOC->ODR = 0xffff ^ led_flag << 8;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, 0);
}
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){
if(htim == &htim2) //pa15
{
freqA.new_val = TIM2->CCR1;
if(freqA.new_val > freqA.old_val){
freqA.update_freq = 20000.0/(freqA.new_val-freqA.old_val)*200;
}
else{
freqA.update_freq = 20000.0/(19999+freqA.new_val-freqA.old_val)*200;
}
freqA.old_val = freqA.new_val;
if(HAL_GetTick()-A_100ms_t>=100){
freqA.freq = freqA.update_freq+para.PX;
if(A_cnt < 30) add_freq(A_3s_data, freqA.freq, &A_cnt);
A_100ms_t = HAL_GetTick();
}
}
if(htim == &htim3){ //pb4
freqB.new_val = TIM3->CCR1;
if(freqB.new_val > freqB.old_val){
freqB.update_freq = 20000.0/(freqB.new_val-freqB.old_val)*200;
}
else{
freqB.update_freq = 20000.0/(19999+freqB.new_val-freqB.old_val)*200;
}
freqB.old_val = freqB.new_val;
if(HAL_GetTick()-B_100ms_t>=100){
freqB.freq = freqB.update_freq+para.PX;
if(B_cnt < 30) add_freq(B_3s_data, freqB.freq, &B_cnt);
B_100ms_t = HAL_GetTick();
}
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
LCD_Init();
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
LCD_Clear(Black);
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
gain_key_state();
key_process();
if(HAL_GetTick()-lcd_100ms_tim>=100){
lcd_process();
recd_process();
lcd_100ms_tim = HAL_GetTick();
}
led_process();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
3.第十五届题目