文章目录
前言
在上一篇文章中,我们详细介绍了红黑树的实现,内容很重要,请大家务必掌握!那么本篇文章将带大家详细讲解红黑树封装map和set的实现,接下来一起看看吧!
一. 源码及框架分析
map和set的实现结构框架核心部分截取出来如下:
// set
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_set.h>
#include <stl_multiset.h>
// map
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_map.h>
#include <stl_multimap.h>
// stl_set.h
template <class Key, class Compare = less<Key>, class Alloc = alloc>
class set {
public:
// typedefs:
typedef Key key_type;
typedef Key value_type;
private:
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing set
};
// stl_map.h
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
// typedefs:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
private:
typedef rb_tree<key_type, value_type,
select1st<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing map
};
// stl_tree.h
struct __rb_tree_node_base
{
typedef __rb_tree_color_type color_type;
typedef __rb_tree_node_base* base_ptr;
color_type color;
base_ptr parent;
base_ptr left;
base_ptr right;
};
// stl_tree.h
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc
= alloc>
class rb_tree {
protected:
typedef void* void_pointer;
typedef __rb_tree_node_base* base_ptr;
typedef __rb_tree_node<Value> rb_tree_node;
typedef rb_tree_node* link_type;
typedef Key key_type;
typedef Value value_type;
public:
// insert⽤的是第⼆个模板参数左形参
pair<iterator, bool> insert_unique(const value_type& x);
// erase和find⽤第⼀个模板参数做形参
size_type erase(const key_type& x);
iterator find(const key_type& x);
protected:
size_type node_count; // keeps track of size of tree
link_type header;
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
typedef __rb_tree_node<Value>* link_type;
Value value_field;
};
通过下图对框架的分析,我们可以看到源码中rb_tree用了一个巧妙的泛型思想实现,rb_tree是实现key的搜索场景,还是key/value的搜索场景不是直接写死的,而是由第二个模板参数Value决定_rb_tree_node中存储的数据类型。
set实例化rb_tree时第二个模板参数给的是key,map实例化rb_tree时第二个模板参数给的是pair<const key, T>,这样一颗红黑树既可以实现key搜索场景的set,也可以实现key/value搜索场景的map。- 要注意一下,源码里面模板参数是用T代表value,而内部写的value_type不是我们我们日常key/value场景中说的value,
源码中的value_type反而是红黑树结点中存储的真实的数据的类型。 - rb_tree第二个模板参数Value已经控制了红黑树结点中存储的数据类型,为什么还要传第一个模板参数Key呢?尤其是set,两个模板参数是一样的。
要注意的是对于map和set,find/erase时的函数参数都是Key,所以第一个模板参数传给find/erase等函数做形参的类型的。对于set而言两个参数都是一样的,但是对于map而言就完全不一样了,map的insert的对象是pair对象,但是find和erase的是Key对象。
二. 模拟实现map和set
2.1 复用红黑树框架并实现insert
红黑树的模板参数至少要用到三个:
template<class K, class T, class KeyOfT>
K表示存储的Key值,T表示实际存储的数据类型,KeyOfT的作用是什么?
首先insert的是T类型,但是我们并不知道T是Key还是pair<const K,V>,那么该如何比较大小呢?
看一下pair对象的比较方法是什么:

可以看到库里面的pair比较大小的方法是first大就大,first小就小,first相等则比较second。
但是我们不需要这样的比较方式,我们就想比较first(Key),first相等就相等。
这个时候KeyOfT就派上用场了:
KeyOfT是一个仿函数,通过重载operator()方法获得T中的K
如果T是K则返回K,如果T是pair<K,V>则返回K
我们只需要在set和map类中实现一个内部类MapKeyOfT和SetKeyOfT,再直接传过去给红黑树的第三个模板参数就可以了,这样RBTree就可以拿到T中的K。
实现insert
RBTree.h
// 枚举值表示颜色
enum Color
{
RED,
BLACK
};
// T存储实际存储的数据类型
template<class T>
struct RBTreeNode
{
// 这里更新控制平衡也要加入parent指针
T _kv;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Color _col;
RBTreeNode(const T& kv)
:_kv(kv),
_left(nullptr),
_right(nullptr),
_parent(nullptr),
_col(RED)
{
}
};
template<class K, class T, class KeyOfT>
class RBTree
{
KeyOfT kot;
public:
typedef RBTreeNode<T> Node;
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr) {
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first) {
parent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
cur = new Node(kv);
// 新增节点,颜色红色
cur->_col = RED;
cur->_parent = parent;
if (kv.first > parent->_kv.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
//对不满足规则的情况进行调整
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
// g
// p u
if (grandfather->_left == parent) {
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED) {
// 叔叔存在且为红,变色再继续往上处理
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else {
// 叔叔不存在或存在且为黑,旋转+变色
if (parent->_left == cur) {
// g
// p u
//c
//单旋
RotateR(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else {
// g
// p u
// c
//双旋
RotateL(parent);
RotateR(grandfather);
grandfather->_col = RED;
cur->_col = BLACK;
}
break;
}
}
else {
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED) {
// 叔叔存在且为红,变色再继续往上处理
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else {
// 叔叔不存在或存在且为黑,旋转+变色
if (parent->_right == cur) {
// g
// u p
// c
// 单旋
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else {
// g
// u p
// c
// 双旋
RotateR(parent);
RotateL(grandfather);
grandfather->_col = RED;
cur->_col = BLACK;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
private:
// 右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
subL->_right = parent;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
parent->_parent = subL;
if (parentParent == nullptr) {
// 如果parent为根节点则更新根节点
_root = subL;
subL->_parent = nullptr;
}
else {
// subL和parentParent建立联系
if (parentParent->_left == parent) {
parentParent->_left = subL;
}
else {
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
//左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
subR->_left = parent;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
parent->_parent = subR;
if (parentParent == nullptr) {
// 如果parent为根节点则更新根节点
_root = subR;
subR->_parent = nullptr;
}
else {
// subR和parentParent建立联系
if (parentParent->_left == parent) {
parentParent->_left = subR;
}
else {
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
private:
Node* _root = nullptr;
};
mymap.h
map的iterator不支持修改key但是可以修改value,我们把map的第二个模板参数pair的第一个参
数改成const K即可, RBTree<K, pair<const K, V>, MapKeyOfT> _rbtree;
namespace MyMap
{
template<class K, class V>
class map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
map() = default;
bool insert(const pair<const K, V>& kv)
{
return _rbtree.Insert(kv);
}
private:
RBTree<K, pair<const K, V>, MapKeyOfT> _rbtree;
};
}
myset.h
set的iterator也不支持修改,我们把set的第二个模板参数改成const K即可, RBTree<K, const K, SetKeyOfT> _rbtree;
namespace MySet
{
template<class K>
class set
{
struct SetKeyOfT {
const K& operator()(const K& key)
{
return key;
}
};
public:
set() = default;
bool insert(const K& kv)
{
return _rbtree.Insert(kv);
}
private:
RBTree<K, const K, SetKeyOfT> _rbtree;
};
}
2.2 支持iterator的实现
iterator的核心源码:
struct __rb_tree_base_iterator
{
typedef __rb_tree_node_base::base_ptr base_ptr;
base_ptr node;
void increment()
{
if (node->right != 0) {
node = node->right;
while (node->left != 0)
node = node->left;
}
else {
base_ptr y = node->parent;
while (node == y->right) {
node = y;
y = y->parent;
}
if (node->right != y)
node = y;
}
}
void decrement()
{
if (node->color == __rb_tree_red &&
node->parent->parent == node)
node = node->right;
else if (node->left != 0) {
base_ptr y = node->left;
while (y->right != 0)
y = y->right;
node = y;
}
else {
base_ptr y = node->parent;
while (node == y->left) {
node = y;
y = y->parent;
}
node = y;
}
}
};
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
typedef Value value_type;
typedef Ref reference;
typedef Ptr pointer;
typedef __rb_tree_iterator<Value, Value&, Value*> iterator;
__rb_tree_iterator() {}
__rb_tree_iterator(link_type x) { node = x; }
__rb_tree_iterator(const iterator& it) { node = it.node; }
reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
self& operator++() { increment(); return *this; }
self& operator--() { decrement(); return *this; }
inline bool operator==(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node == y.node;
}
inline bool operator!=(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node != y.node;
}
}
iterator实现的大框架跟list的iterator思路是一致的,用一个类型封装结点的指针,再通过重载运算符实现,迭代器像指针一样访问的行为。
2.2.1 基本的运算符重载
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
RBTreeIterator(Node* node)
:_node(node),
{
}
Ref operator*()
{
return _node->_kv;
}
Ptr operator->()
{
return &_node->_kv;
}
bool operator!=(const Self& it) const
{
return _node != it._node;
}
bool operator==(const Self& it) const
{
return _node == it._node;
}
Node* _node;
};
2.2.2 operator++的重载
这里的难点是operator++和operator–的实现。之前使用部分,我们分析了,map和set的迭代器走的是中序遍历:左子树->根结点->右子树。那么begin()会返回中序第一个节点所在位置的迭代器。
如果遍历到当前节点的时候,要继续访问下一个节点应当去访问它的右子树,因为当前节点的左子树肯定遍历完了才会遍历到当前节点。
- 如果当前节点的右子树不为空,代表当前节点的左子树访问完了,要访问下一个节点是右子树的中序第一个,一棵树中序第一个是最左节点,也就是右子树的最左节点。
- 如果当前节点的右子树为空,代表当前节点已经访问完了且当前节点所在的子树也访问完了,要访问的下一个节点在当前节点的祖先里面,所以要沿着当前节点到根的祖先路径向上找。
- 如何找?根据
中序遍历:左子树->根结点->右子树这个访问顺序就可以发现:如果当前节点是它父亲节点的左孩子,说明父亲节点的左子树访问完了,下一个访问的节点就是父亲节点;如果当前节点是它父亲节点的右孩子,那么父亲节点的右子树访问完了,说明以父节点为根的子树也访问完了,那么下一个访问的节点需要继续往根的祖先中去找,直到找到孩子是父亲左的那个祖先就是下一个节点。
代码实现:
Self& operator++()
{
if (_node->_right)
{
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && parent->_right == cur)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
2.2.3 operator–的重载
迭代器–的实现跟++的思路完全类似,逻辑正好反过来即可,因为他访问顺序是右子树->根结点->左子树。
- 当使用迭代器遍历红黑树的节点时,如果遇到
nullptr,我们就用nullptr去充当end(),当–end()判断到节点为空时,还需要特殊处理一下:让迭代器节点指针指向红黑树的最右节点(中序的最后一个)- 那么怎么找到最右节点?(源码使用一个哨兵位节点去充当end(),让哨兵位节点的右孩子指向最右节点,这样就可以找到了)我们这里让迭代器类增加一个成员去存储红黑树的根节点即可,通过根节点就可以找到最右节点。
代码实现:
Self& operator--()
{
if (_node == nullptr)
{
Node* cur = _root;
while (cur && cur->_right)
{
cur = cur->_right;
}
_node = cur;
}
else if (_node->_left)
{
Node* cur = _node->_left;
while (cur->_right)
{
cur = cur->_right;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && parent->_left == cur)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
上面的前置++和前置–已经实现了,那么后置++和后置–就很简单了,下面看完整代码:
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
RBTreeIterator(Node* node, Node* root)
:_node(node),
_root(root)
{
}
Ref operator*()
{
return _node->_kv;
}
Ptr operator->()
{
return &_node->_kv;
}
bool operator!=(const Self& it) const
{
return _node != it._node;
}
bool operator==(const Self& it) const
{
return _node == it._node;
}
// 前置++
Self& operator++()
{
if (_node->_right)
{
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && parent->_right == cur)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
// 前置--
Self& operator--()
{
if (_node == nullptr)
{
Node* cur = _root;
while (cur && cur->_right)
{
cur = cur->_right;
}
_node = cur;
}
else if (_node->_left)
{
Node* cur = _node->_left;
while (cur->_right)
{
cur = cur->_right;
}
_node = cur;
}
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && parent->_left == cur)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
// 后置++
Self operator++(int)
{
Self tmp = *this;
++(*this);
return tmp;
}
// 后置--
Self operator--(int)
{
Self tmp = *this;
--(*this);
return tmp;
}
Node* _node;
Node* _root;
};
2.2.4 RBTree、set和map的迭代器实现
RBTree
这里begin()返回的是中序遍历的第一个节点的位置,也就是红黑树的最左节点;而end()返回的则是nullptr的位置
typedef RBTreeIterator<T, T&, T*> Iterator;
typedef RBTreeIterator<T, const T&, const T*> ConstIterator;
Iterator Begin()
{
Node* cur = _root;
while (cur->_left)
{
cur = cur->_left;
}
return Iterator(cur, _root);
}
Iterator End()
{
return Iterator(nullptr, _root);
}
ConstIterator Begin() const
{
Node* cur = _root;
while (cur->_left)
{
cur = cur->_left;
}
return ConstIterator(cur, _root);
}
ConstIterator End() const
{
return ConstIterator(nullptr, _root);
}
set和map
直接对RBTree的迭代器进行复用即可。
set
typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;
iterator begin()
{
return _rbtree.Begin();
}
iterator end()
{
return _rbtree.End();
}
const_iterator begin() const
{
return _rbtree.Begin();
}
const_iterator end() const
{
return _rbtree.End();
}
map
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;
iterator begin()
{
return _rbtree.Begin();
}
iterator end()
{
return _rbtree.End();
}
const_iterator begin() const
{
return _rbtree.Begin();
}
const_iterator end() const
{
return _rbtree.End();
}
这里的
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;中的typename是告诉编译器这是个类型,因为编译器不知道Iterator是类型还是成员变量(因为编译器是按需实例化的),加了typename是明确告诉编译器这是个类型。
测试:
#include "mymap.h"
#include "myset.h"
void test_set()
{
MySet::set<int> st;
st.insert(1);
st.insert(6);
st.insert(3);
st.insert(8);
MySet::set<int>::iterator it = st.begin();
while (it != st.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void test_map()
{
MyMap::map<int, int> mp;
mp.insert({ 4,40 });
mp.insert({ 2,20 });
mp.insert({ 1,10 });
mp.insert({ 3,30 });
MyMap::map<int, int>::iterator it = mp.begin();
while (it != mp.end())
{
cout << it->first << " " << it->second << endl;
++it;
}
cout << endl;
}
int main()
{
test_set();
test_map();
return 0;
}

三. map的operator[]的实现
map的operator[],我们知道它有两种功能:
查找+修改:key存在,返回value的引用插入+修改:key不存在,插入key和value的缺省值,返回value的引用
看一下map库里面的insert函数:

库里面返回的是pair<iterator , bool>类型,说明:
- 如果
key存在,则返回该节点的迭代器和false。- 如果
key不存在,则返回新插入节点的迭代器和true。
修改后的插入函数(RBTree):
pair<Iterator, bool> Insert(const T& kv)
{
if (_root == nullptr) {
_root = new Node(kv);
_root->_col = BLACK;
return make_pair(Iterator(_root, _root), true);
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (kot(kv) > kot(cur->_kv)) {
parent = cur;
cur = cur->_right;
}
else if (kot(kv) < kot(cur->_kv)) {
parent = cur;
cur = cur->_left;
}
else {
return make_pair(Iterator(cur, _root), false);
}
}
cur = new Node(kv);
Node* newnode = cur;
// 新增节点,颜色红色
cur->_col = RED;
cur->_parent = parent;
if (kot(kv) > kot(parent->_kv)) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
// g
// p u
if (grandfather->_left == parent) {
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED) {
// 叔叔存在且为红,变色再继续往上处理
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else {
// 叔叔不存在或存在且为黑,旋转+变色
if (parent->_left == cur) {
// g
// p u
//c
//单旋
RotateR(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else {
// g
// p u
// c
//双旋
RotateL(parent);
RotateR(grandfather);
grandfather->_col = RED;
cur->_col = BLACK;
}
break;
}
}
else {
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED) {
// 叔叔存在且为红,变色再继续往上处理
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else {
// 叔叔不存在或存在且为黑,旋转+变色
if (parent->_right == cur) {
// g
// u p
// c
// 单旋
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else {
// g
// u p
// c
// 双旋
RotateR(parent);
RotateL(grandfather);
grandfather->_col = RED;
cur->_col = BLACK;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(Iterator(newnode, _root), true);
}
map实现operator[]:
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _rbtree.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = insert(make_pair(key, V()));
return ret.first->second;
}
测试:
void test_map()
{
MyMap::map<string, string> dict;
dict.insert({ "sort", "排序" });
dict.insert({ "left", "左边" });
dict.insert({ "right", "右边" });
dict["left"] = "左边,剩余";
dict["insert"] = "插入";
dict["string"];
MyMap::map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
it->second += 's';
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
}

四. set和map的erase函数(可选)
RBTree的erase比较难,感兴趣的可以看看:
// 删除
bool Erase(const K& key)
{
if (_root == nullptr) return false;
/*Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (key > kot(cur->_kv)) {
parent = cur;
cur = cur->_right;
}
else if (key < kot(cur->_kv)) {
parent = cur;
cur = cur->_left;
}
else {
break;
}
}
if (cur == nullptr) return false;*/
Node* cur = Find(key)._node;
if (cur == nullptr) {
return false;
}
Node* parent = cur->_parent;
if (cur->_left && cur->_right)
{
Node* minRight = cur->_right;
Node* minRightParent = cur;
while (minRight->_left)
{
minRightParent = minRight;
minRight = minRight->_left;
}
// cur->_kv = minRight->_kv;
// 用新节点代替cur,解决不能直接代替值的问题
Node* ReplaceNode = new Node(minRight->_kv);
ReplaceNode->_col = cur->_col;
ReplaceNode->_left = cur->_left;
ReplaceNode->_right = cur->_right;
ReplaceNode->_parent = cur->_parent;
if (ReplaceNode->_left) ReplaceNode->_left->_parent = ReplaceNode;
if (ReplaceNode->_right) ReplaceNode->_right->_parent = ReplaceNode;
if (cur->_parent) {
if (cur->_parent->_left == cur) {
cur->_parent->_left = ReplaceNode;
}
else {
cur->_parent->_right = ReplaceNode;
}
}
else {
_root = ReplaceNode;
}
if (minRightParent == cur)
{
// 细节:如果minRightParent指向cur,需要将minRightParent指向ReplaceNode
minRightParent = ReplaceNode;
}
// 删除原节点
delete cur;
cur = minRight;
parent = minRightParent;
}
Node* child = nullptr;
if (cur->_left) child = cur->_left;
else child = cur->_right;
if (child) child->_parent = parent;
if (parent == nullptr) {
_root = child;
if (_root) _root->_col = BLACK;
delete cur;
return true;
}
if (child) {
if (parent->_left == cur) {
parent->_left = child;
}
else {
parent->_right = child;
}
child->_col = BLACK;
}
else {
Node* pNode = cur;
if (pNode->_col == RED) {
if (parent->_left == cur) {
parent->_left = nullptr;
}
else {
parent->_right = nullptr;
}
delete cur;
return true;
}
// pNode表示双黑节点
while (pNode)
{
if (pNode->_col == RED || pNode == _root)
{
pNode->_col = BLACK;
break;
}
Node* bro = nullptr;
if (parent->_left == pNode)
{
bro = parent->_right;
if (bro->_col == BLACK)
{
Node* broR = bro->_right;
Node* broL = bro->_left;
if (broR && broR->_col == RED)
{
broR->_col = bro->_col;
bro->_col = parent->_col;
parent->_col = BLACK;
RotateL(parent);
break;
}
else if (broL && broL->_col == RED)
{
broL->_col = parent->_col;
parent->_col = BLACK;
RotateR(bro);
RotateL(parent);
break;
}
else
{
bro->_col = RED;
pNode = parent;
parent = parent->_parent;
}
}
else
{
bro->_col = BLACK;
parent->_col = RED;
RotateL(parent);
}
}
else
{
bro = parent->_left;
if (bro->_col == BLACK)
{
Node* broR = bro->_right;
Node* broL = bro->_left;
if (broL && broL->_col == RED)
{
broL->_col = bro->_col;
bro->_col = parent->_col;
parent->_col = BLACK;
RotateR(parent);
break;
}
else if (broR && broR->_col == RED)
{
broR->_col = parent->_col;
parent->_col = BLACK;
RotateL(bro);
RotateR(parent);
break;
}
else
{
bro->_col = RED;
pNode = parent;
parent = parent->_parent;
}
}
else
{
bro->_col = BLACK;
parent->_col = RED;
RotateR(parent);
}
}
}
parent = cur->_parent;
if (parent->_left == cur) {
parent->_left = nullptr;
}
else {
parent->_right = nullptr;
}
delete cur;
}
_root->_col = BLACK;
return true;
}
这里代替节点时不能简单地使用cur->_kv = minRight->_kv;了,因为key是不能修改的,我们可以再开辟一个新节点代替cur的位置,再删除cur节点,再让cur指向要被删除的节点即可。
代码实现:
set和map
void erase(const K& key)
{
_rbtree.Erase(key);
}
测试:
void test_set()
{
MySet::set<int> st;
st.insert(1);
st.insert(6);
st.insert(3);
st.insert(8);
MySet::set<int>::iterator it = st.begin();
while (it != st.end())
{
cout << *it << " ";
++it;
}
cout << endl;
st.erase(3);
it = st.begin();
while (it != st.end())
{
cout << *it << " ";
++it;
}
cout << endl;
st.erase(8);
it = st.begin();
while (it != st.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void test_map()
{
MyMap::map<string, string> dict;
dict.insert({ "sort", "排序" });
dict.insert({ "left", "左边" });
dict.insert({ "right", "右边" });
dict["left"] = "左边,剩余";
dict["insert"] = "插入";
dict["string"];
MyMap::map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
it->second += 's';
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
dict.erase("insert");
auto it1 = dict.begin();
while (it1 != dict.end())
{
cout << it1->first << ":" << it1->second << endl;
++it1;
}
cout << endl;
dict.erase("string");
it1 = dict.begin();
while (it1 != dict.end())
{
cout << it1->first << ":" << it1->second << endl;
++it1;
}
cout << endl;
}
int main()
{
test_set();
test_map();
return 0;
}

五. map和set的构造函数和析构函数
RBTree的构造函数和析构函数:
RBTree() = default;
~RBTree()
{
Destory(_root);
}
RBTree(const Self& rbtree)
{
_root = NodeCopy(rbtree._root, nullptr);
}
Self& operator=(const Self& rbtree)
{
_root = NodeCopy(rbtree._root, nullptr);
return *this;
}
void Destory(Node* root)
{
if (root == nullptr) return;
if (root->_left) Destory(root->_left);
if (root->_right) Destory(root->_right);
delete root;
root = nullptr;
}
Node* NodeCopy(Node* root, Node* parent)
{
if (root == nullptr) return nullptr;
Node* newnode = new Node(root->_kv);
newnode->_col = root->_col;
newnode->_parent = parent;
newnode->_left = NodeCopy(root->_left, newnode);
newnode->_right = NodeCopy(root->_right, newnode);
return newnode;
}
set的构造函数和析构函数:
set() = default;
set(initializer_list<K> il)
{
for (const auto& e : il)
{
_rbtree.Insert(e);
}
}
template<class InputIterator>
set(InputIterator first, InputIterator last)
{
while (first != last)
{
_rbtree.Insert(*first);
++first;
}
}
set(const set& x)
{
//_rbtree = x._rbtree;
for (const auto& e : x)
{
_rbtree.Insert(e);
}
}
set& operator=(const set& x)
{
_rbtree = x._rbtree;
return *this;
}
map的构造函数和析构函数:
map() = default;
map(initializer_list<pair<K, V>> il)
{
for (const auto& e : il)
{
_rbtree.Insert(e);
}
}
template<class InputIterator>
map(InputIterator first, InputIterator last)
{
while (first != last)
{
_rbtree.Insert(*first);
++first;
}
}
map(const map& x)
{
//_rbtree = x._rbtree;
for (const auto& e : x)
{
_rbtree.Insert(e);
}
}
map& operator=(const map& x)
{
_rbtree = x._rbtree;
return *this;
}
使用红黑树封装map和set的源代码:https://gitee.com/xie-zhus-shovel/c-learning/tree/master/C%2B%2BLearning/%E4%BD%BF%E7%94%A8%E7%BA%A2%E9%BB%91%E6%A0%91%E5%B0%81%E8%A3%85set%E5%92%8Cmap
最后
本篇关于使用红黑树封装map和set的实现到这里就结束了,难度还是蛮大的,需要大家多去敲代码,其中还有很多细节值得我们去探究,需要我们不断地学习。如果本篇内容对你有帮助的话就给一波三连吧,对以上内容有异议或者需要补充的,欢迎大家来讨论!

1186

被折叠的 条评论
为什么被折叠?



