A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample
Inputcopy | Outputcopy |
---|---|
6 8 | Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2 |
#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define int ll
using namespace std;
const int N=1e6+7;
const int M=2e3+7;
int prime[N];
int n,sum=0;
bool vis[N];
int a[N];
bool isprime(int x)
{
if(x==1) return 0;
if(x==2) return 1;
for(int i=2;i*i<=x;i++)
{
if(x%i==0) return 0;
}
return 1;
}
void dfs(int x)
{
if(x==n+1&&isprime(a[n]+a[1]))
{
for(int i=1;i<=n;i++) cout<<a[i]<<' ';
cout<<endl;
return;
}
for(int i=2;i<=n;i++)
{
if(vis[i]==0&&isprime(i+a[x-1]))
{
vis[i]=1;
a[x]=i;
dfs(x+1);
vis[i]=0;
}
}
}
signed main()
{
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int cnt=0;
while(cin>>n)
{
cout<<"Case "<<++cnt<<":"<<endl;
a[1]=1;
dfs(2);
cout<<endl;
memset(vis,0,sizeof vis);
}
return 0;
}