【C++】多态

1. 多态的概念

多态(polymorphism)的概念:通俗来说,就是多种形态。多态分为编译时多态(静态多态)和运⾏时多态(动态多态),这⾥我们重点讲运⾏时多态,编译时多态(静态多态)和运⾏时多态(动态多态)。编译时多态(静态多态)主要就是我们前⾯讲的函数重载和函数模板,他们传不同类型的参数就可以调⽤不同的 函数,通过参数不同达到多种形态,之所以叫编译时多态,是因为他们实参传给形参的参数匹配是在编译时完成的,我们把编译时⼀般归为静态,运⾏时归为动态。

运⾏时多态,具体点就是去完成某个⾏为(函数),可以传不同的对象就会完成不同的⾏为,就达到多种形态。⽐如买票这个⾏为,当普通⼈买票时,是全价买票;学⽣买票时,是优惠买票(5折或75折);军⼈买票时是优先买票。再⽐如,同样是动物叫的⼀个⾏为(函数),传猫对象过去,就是”(>^ω^<) 喵“,传狗对象过去,就是"汪汪"。

2. 多态的定义及实现

2.1 多态的构成条件

多态是⼀个继承关系的下的类对象,去调⽤同⼀函数,产⽣了不同的⾏为。⽐如Student继承了 Person。Person对象买票全价,Student对象优惠买票。

2.1.1 实现多态还有两个必须重要条件

必须指针或者引⽤调⽤虚函数

被调⽤的函数必须是虚函数。

说明:要实现多态效果,第⼀必须是基类的指针或引⽤,因为只有基类的指针或引⽤才能既指向派⽣ 类对象;第⼆派⽣类必须对基类的虚函数重写/覆盖,重写或者覆盖了,派⽣类才能有不同的函数,多2.1.2 虚函数态的不同形态效果才能达到。

2.1.2 虚函数

类成员函数前⾯加virtual修饰,那么这个成员函数被称为虚函数。注意⾮成员函数不能加virtual修 饰。

class Person
{
public:
    virtual void BuyTicket() { cout << "买票-全价" << endl; }
};

2.1.3 虚函数的重写/覆盖

虚函数的重写/覆盖:派⽣类中有⼀个跟基类完全相同的虚函数(即派⽣类虚函数与基类虚函数的返回值 类型、函数名字、参数列表完全相同),称派⽣类的虚函数重写了基类的虚函数。

注意:在重写基类虚函数时,派⽣类的虚函数在不加virtual关键字时,虽然也可以构成重写(因为继承后基类的虚函数被继承下来了在派⽣类依旧保持虚函数属性),但是该种写法不是很规范,不建议这样使⽤,不过在考试选择题中,经常会故意买这个坑,让你判断是否构成多态。

#include <iostream>
using namespace std;

class Person {
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
	virtual void BuyTicket() { cout << "买票-打折" << endl; }
};
void Func(Person* ptr)
{
	// 这⾥可以看到虽然都是Person指针Ptr在调⽤BuyTicket
	// 但是跟ptr没关系,⽽是由ptr指向的对象决定的。
	ptr->BuyTicket();
}
int main()
{
	Person ps;
	Student st;
	Func(&ps);
	Func(&st);

	return 0;
}

这里满足多态,student类继承了Person类,student类重写了基类的函数也就是BuyTicket()方法,输出内容为“买票-打折”。

st原来是student的类型然后传过去变成了基类的类型,此时这个子类对象只能访问父类的内容,子类的内容访问不了,需要借助虚表指针和虚表。(下面会讲浅浅提一下)

class Animal
{
public:
	virtual void talk() const
	{}
};

class Dog : public Animal
{
public:
	virtual void talk() const
	{
		std::cout << "汪汪" << std::endl;
	}
};

class Cat : public Animal
{
public:
	virtual void talk() const
	{
		std::cout << "(>^ω^<)喵" << std::endl;
	}
};

void letsHear(const Animal& animal)
{
	animal.talk();
}
int main()
{
	Cat cat;
	Dog dog;
	letsHear(cat);
	letsHear(dog);
	return 0;
}

2.1.4 多态场景的⼀个选择题

以下程序输出结果是什么(B)

A: A->0 B:         B:B->1         C: A->1         D: B->0         E: 编译出错         F: 以上都不正确

class A
{
public:
	virtual void func(int val = 1) { std::cout << "A->" << val << std::endl; }
	virtual void test() { func(); }
};

class B : public A
{
public:
	void func(int val = 0) { std::cout << "B->" << val << std::endl; }
};

int main(int argc, char* argv[])
{
	B* p = new B;
	p->test();

	return 0;
}

要实现多态效果,第⼀必须是基类的指针或引⽤,因为只有基类的指针或引⽤才能既指向派⽣类对象;第⼆派⽣类必须对基类的虚函数重写/覆盖,重写或者覆盖了,派⽣类才能有不同的函数,多 态的不同形态效果才能达到。

这里符合多态的条件,所以会重写,本质重写虚函数的实现

注意:当基类中的函数被声明为 virtual,这个特性会被继承到所有派生类。派生类中的相同函数会自动成为虚函数。

2.1.5 虚函数重写的⼀些其他问题

协变(了解)

派⽣类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指针或者引⽤,派⽣类虚函数返回派⽣类对象的指针或者引⽤时,称为协变。协变的实际意义并不⼤,所以我们了解⼀下即可。

class A {};
class B : public A {};

// 协变
class Person {
public:
	virtual A* BuyTicket()
	{
		cout << "买票-全价" << endl;
		return nullptr;
	}
};

class Student : public Person {
public:
	virtual B* BuyTicket()
	{
		cout << "买票-打折" << endl;
		return nullptr;
	}
};

void Func(Person* ptr)
{
	ptr->BuyTicket();
}

int main()
{
	Person ps;
	Student st;

	Func(&ps);
	Func(&st);

	return 0;
}

这里必须是继承的关系否则会编译报错,这里只要是父子类就行可以是自己的类也可以是别的类。

大家只需知道这个概论即可,以免出现在选择题里面。

析构函数的重写

基类的析构函数为虚函数,此时派⽣类析构函数只要定义,⽆论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派⽣类析构函数名字不同看起来不符合重写的规则,实际上编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统⼀处理成destructor,所以基类的析构函数加了 vialtual修饰,派⽣类的析构函数就构成重写。

下⾯的代码我们可以看到,如果~A(),不加virtual,那么delete p2时只调⽤的A的析构函数,没有调⽤B的析构函数,就会导致内存泄漏问题,因为~B()中在释放资源。

注意:这个问题⾯试中经常考察,⼤家⼀定要结合类似下⾯的样例才能讲清楚,为什么基类中的析构函数建议设计为虚函数。

class  A
{
public:
	virtual ~A()
	{
		cout << "~A()" << endl;
	}
};
class B : public A
{
public:
	//构成重写
	~B()
	{
		cout << "~B()->delete:" << _p << endl;
		delete _p;
	}
protected:
	int* _p = new int[10];
};
// 只有派⽣类B的析构函数重写了A的析构函数,下⾯的delete对象调⽤析构函数,才能
//构成多态,才能保证p1和p2指向的对象正确的调⽤析构函数。
int main()
{
	A* p1 = new A;
	A* p2 = new B;

	// p1->destructor() + operator delete 
	delete p1;
	delete p2;

	return 0;
}

2.1.6 override 和 final关键字

从上⾯可以看出,C++对函数重写的要求⽐较严格,但是有些情况下由于疏忽,⽐如函数名写错参数写 错等导致⽆法构成重载,⽽这种错误在编译期间是不会报出的,只有在程序运⾏时没有得到预期结果才来debug会得不偿失,因此C++11提供了override,可以帮助⽤⼾检测是否重写。如果我们不想让派⽣类重写这个虚函数,那么可以⽤final去修饰。

override检查是否重写 

如果我们不想让派⽣类重写这个虚函数,那么可以⽤final去修饰。

2.1.7 重载/重写/隐藏的对比

注意:这个概念对⽐经常考,⼤家得理解记忆⼀下

3. 纯虚函数和抽象类

在虚函数的后⾯写上 =0 ,则这个函数为纯虚函数,纯虚函数不需要定义实现(实现没啥意义因为要被 派⽣类重写,但是语法上可以实现),只要声明即可。包含纯虚函数的类叫做抽象类,抽象类不能实例 化出对象,如果派⽣类继承后不重写纯虚函数,那么派⽣类也是抽象类。纯虚函数某种程度上强制了 派⽣类重写虚函数,因为不重写实例化不出对象。

//纯虚函数和抽象类
class Car
{
public:
	// 纯虚函数
	virtual void Drive() = 0;
};

class Benz :public Car
{
public:
	virtual void Drive()
	{
		cout << "Benz-舒适" << endl;
	}
};

class BMW :public Car
{
public:
	virtual void Drive()
	{
		cout << "BMW-操控" << endl;
	}
};

int main()
{
	Car* pBenz = new Benz;
	pBenz->Drive();

	Car* pBMW = new BMW;
	pBMW->Drive();

	return 0;
}

4. 多态的原理

4.1 虚函数表指针

下⾯编译为32位程序的运⾏结果是什么(D)

A. 编译报错         B. 运⾏报错         C. 8         D. 12

class Base
{
public:
    virtual void Func1()
    {
        cout << "Func1()" << endl;
    }

protected:
    int _b = 1;
    char _ch = 'x';
};

int main()
{
    Base b;
    cout << sizeof(b) << endl;
    return 0;
}

这个题很多人都会以为是8个字节但是事实不是而是12个字节

运行结果:

这是为什么呢?我们调试看一下

除了_b和_ch成员,还多⼀个__vfptr放在对象的前⾯(注意有些平台可能 会放到对象的最后⾯,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代 表function)。⼀个含有虚函数的类中都⾄少都有⼀个虚函数表指针,因为⼀个类所有虚函数的地址要被放到这个类对象的虚函数表中,虚函数表也简称虚表。

4.2 多态的原理

4.2.1 多态是如何实现的

class Person {
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};

class Student : public Person {
public:
	virtual void BuyTicket() { cout << "买票-打折" << endl; }
};
void Func(Person* ptr)
{
	// 这⾥可以看到虽然都是Person指针Ptr在调⽤BuyTicket
	// 但是跟ptr没关系,⽽是由ptr指向的对象决定的。
	ptr->BuyTicket();
}

int main()
{
	Person ps;
	Student st;
	Func(&ps);
	Func(&st);

	return 0;
}

从底层的⻆度Func函数中ptr->BuyTicket(),是如何作为ptr指向Person对象调Person::BuyTicket, ptr指向Student对象调⽤Student::BuyTicket的呢?通过下图我们可以看到,满⾜多态条件后,底层 不再是编译时通过调⽤对象确定函数的地址,⽽是运⾏时到指向的对象的虚表中确定对应的虚函数的地址,这样就实现了指针或引⽤指向基类就调⽤基类的虚函数,指向派⽣类就调⽤派⽣类对应的虚函数。

第⼀张图,ptr指向的Person对象,调⽤的是Person的虚函数; 

第⼆张图,ptr指向Student对象,调⽤的是Student的虚函数 

补充:重写只是把虚表中的函数地址改了,本来是打算执行父类的函数的,然后在虚表中找父类的函数地址,找到的地址其实是子类的,所以最终执行了子类的虚函数

4.2.2 动态绑定与静态绑定

对不满⾜多态条件(指针或者引⽤+调⽤虚函数)的函数调⽤是在编译时绑定,也就是编译时确定调⽤函数的地址,叫做静态绑定。

满⾜多态条件的函数调⽤是在运⾏时绑定,也就是在运⾏时到指向对象的虚函数表中找到调⽤函数 的地址,也就做动态绑定。

// ptr是指向对象的指针,BuyTicket是虚函数,满足多态条件。
// 这⾥就是动态绑定,编译时运行时到ptr指向对象的虚函数表中确定调用函数地址

        ptr->BuyTicket();

00EF2001 mov       eax, dword ptr [ptr] 
// 将ptr指向的对象的地址加载到eax寄存器中

00EF2004 mov       edx, dword ptr [eax] 
// 从eax中取出对象的虚函数表的地址,加载到edx寄存器中

00EF2006 mov       esi, esp 
// 将当前栈指针(esp)保存到esi寄存器,可能用于调用时的参数管理

00EF2008 mov       ecx, dword ptr [ptr] 
// 将ptr的值(对象地址)加载到ecx寄存器中

00EF200B mov       eax, dword ptr [edx] 
// 从edx中获取虚函数表中的函数指针,加载到eax寄存器中

00EF200D call          eax 
// 调用eax寄存器中存储的函数指针,实际调用的是对象的虚函数实现

// BuyTicket不是虚函数,不满足多态条件。
// 这⾥就是静态绑定,编译器直接确定调用函数地址
        ptr->BuyTicket();
00EA2C91 mov       ecx, dword ptr [ptr] 
// 将ptr指向的对象的地址加载到ecx寄存器中

00EA2C94 call          Student::Student  (0EA153Ch) 
// 直接调用Student类中的BuyTicket函数,使用静态绑定,编译器在编译时确定了函数地址

4.2.3 虚函数表

基类对象的虚函数表中存放基类所有虚函数的地址。

派⽣类由两部分构成,继承下来的基类和⾃⼰的成员,⼀般情况下,继承下来的基类中有虚函数表 指针,⾃⼰就不会再⽣成虚函数表指针。但是要注意的这⾥继承下来的基类部分虚函数表指针和基 类对象的虚函数表指针不是同⼀个,就像基类对象的成员和派⽣类对象中的基类对象成员也独⽴ 的。

派⽣类中重写的基类的虚函数,派⽣类的虚函数表中对应的虚函数就会被覆盖成派⽣类重写的虚函 数地址。

派⽣类的虚函数表中包含,基类的虚函数地址,派⽣类重写的虚函数地址,派⽣类⾃⼰的虚函数地 址三个部分。

虚函数表本质是⼀个存虚函数指针的指针数组,⼀般情况这个数组最后⾯放了⼀个0x00000000标 记。(这个C++并没有进⾏规定,各个编译器⾃⾏定义的,vs系列编译器会再后⾯放个0x00000000 标记,g++系列编译不会放)

虚函数存在哪的?虚函数和普通函数⼀样的,编译好后是⼀段指令,都是存在代码段的,只是虚函 数的地址⼜存到了虚表中。

class Base {
public:
	virtual void func1() { cout << "Base::func1" << endl; }
	virtual void func2() { cout << "Base::func2" << endl; }
	void func5() { cout << "Base::func5" << endl; }
protected:
	int a = 1;
};

class Derive : public Base
{
public:
	// 重写基类的func1
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func1" << endl; }
	void func4() { cout << "Derive::func4" << endl; }

protected:
	int b = 2;
};

int main()
{
	Base b;
	Derive d;

	return 0;
}

Base

Derive

这⾥Derive中没有看到func3函数,这个vs监视窗⼝看不到,大家可以通过内存窗⼝查看

虚函数表存在哪的?这个问题严格说并没有标准答案C++标准并没有规定,我们写下⾯的代码可以 对⽐验证⼀下。vs下是存在代码段(常量区)

class Base {
public:
	virtual void func1() { cout << "Base::func1" << endl; }
	virtual void func2() { cout << "Base::func2" << endl; }
	void func5() { cout << "Base::func5" << endl; }
protected:
	int a = 1;
};

class Derive : public Base
{
public:
	// 重写基类的func1
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func1" << endl; }
	void func4() { cout << "Derive::func4" << endl; }

protected:
	int b = 2;
};

int main()
{
	int i = 0;
	static int j = 1;
	int* p1 = new int;
	const char* p2 = "xxxxxxxx";
	printf("栈:%p\n", &i);
	printf("静态区:%p\n", &j);
	printf("堆:%p\n", p1);
	printf("常量区:%p\n", p2);

	Base b;
	Derive d;
	Base* p3 = &b;
	Derive* p4 = &d;
	printf("Person虚表地址:%p\n", *(int*)p3);
	printf("Student虚表地址:%p\n", *(int*)p4);
	printf("虚函数地址:%p\n", &Base::func1);
	printf("普通函数地址:%p\n", &Base::func5);
	return 0;
}

运行结果:

可以看到虚表是存放在常量区的

不同平台有所不同C++标准并没有规定,大家可以自己去测试一下g++下存放在那里。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值