一刷代码随想录(DP4)

377. 组合总和 Ⅳ

题意:

难度:中等

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

  • nums = [1, 2, 3]
  • target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

解法:使用完全背包,dp数组初始化为零,dp[0]初始化为1来推导递推公式,dp[i]代表和为i时有几种组合,从dp[1]开始由小到大遍历,dp[i](考虑nums[j])可以由 dp[i - nums[j]], 推导出来。

因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。

代码如下:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // 遍历背包
            for (int j = 0; j < nums.size(); j++) { // 遍历物品
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};

70. 爬楼梯(进阶版)

题意:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述:输入共一行,包含两个正整数,分别表示n, m

输出描述:输出一个整数,表示爬到楼顶的方法数。

输入示例:3 2

输出示例:3

提示:

当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。

此时你有三种方法可以爬到楼顶。

  • 1 阶 + 1 阶 + 1 阶段
  • 1 阶 + 2 阶
  • 2 阶 + 1 阶

解法:n就是背包容量,m就是物品重量,也是完全背包问题。dp[0]初始为1,先遍历背包容量也就是target,再遍历物品重量,以保证2+1与1+2都被记录,因此要从前向后遍历

代码如下:

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, m;
    while (cin >> n >> m) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) { // 遍历背包
            for (int j = 1; j <= m; j++) { // 遍历物品
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        cout << dp[n] << endl;
    }
}

零钱兑换

题意:

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0
示例 4:

输入:coins = [1], amount = 1
输出:1
示例 5:

输入:coins = [1], amount = 2
输出:2
提示:

1 <= coins.length <= 12
1 <= coins[i] <= 2^31 - 1
0 <= amount <= 10^4

解法:完全背包问题,由于此时求的不是种数,而是是否存在最小货币数量,每次取最小数目存入数组即可。

代码如下:

// 版本一
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
                    dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }

完全平方数

题意:

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

  • 输入:n = 12
  • 输出:3
  • 解释:12 = 4 + 4 + 4

示例 2:

  • 输入:n = 13
  • 输出:2
  • 解释:13 = 4 + 9

提示:

  • 1 <= n <= 10^4

解法:就是完全背包,但每一个位置的nums变成了完全平方数,解法同上题

代码:

// 版本一
class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i <= n; i++) { // 遍历背包
            for (int j = 1; j * j <= i; j++) { // 遍历物品
                dp[i] = min(dp[i - j * j] + 1, dp[i]);
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值