【建立MLP模型】
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(units = 50,input_dim =1,activation='relu')) # 隐藏层包含50个神经元
model.add(Dense(units = 50,activation='relu'))
model.add(Dense(units = 1,activation='linear')) # 输出层
model.compile(optimizer='adam',loss='mean_squared_error')
model.summary()
# 模型训练与二次训练
model.fit(x,y)
model.fit(x2,y2)
#模型保存到本地
from sklearn.externals import joblib
joblib.dump(model,"model1.m")
# 加载本地模型
model2 = joblib.load("model1.m")
【数据增强】
from keras.preprocessing.image import ImageDataGenerator
path = 'origin_data' # 待增强图片的路径
dst_path = 'gen_data' # 增强后图片的存储路径
# 创建实例、配置图片增强参数
datagen