生成决策树决策区域图
#构建决策树
from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
import matplotlib
from distutils.version import LooseVersion
from sklearn.tree import DecisionTreeClassifier
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0],
y=X[y == cl, 1],
alpha=0.8,
color=colors[idx],
marker=markers[idx],
label=cl,
edgecolor='black')
if test_idx:
# plot all examples
X_test, y_test = X[test_idx, :], y[test_idx]
if LooseVersion(matplotlib.__version__) < LooseVersion('0.3.4'):
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='',
edgecolor='black',
alpha=1.0,
linewidth=1,
marker='o',
s=100,
label='test set')
else:
plt.scatter(X_test[:, 0],
X_test[:, 1],
c='none',
edgecolor='black',
alpha=1.0,
linewidth=1,
marker='o',
s=100,
label='test set')
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
tree_model = DecisionTreeClassifier(criterion='gini',max_depth=4,random_state=1)
tree_model.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined,y_combined,classifier=tree_model,test_idx=range(105,150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
保存决策树图像(先安装graphviz,pydotplus,pyparsing)
from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from pydotplus import graph_from_dot_data
from sklearn.tree import export_graphviz
tree_model = DecisionTreeClassifier(criterion='gini',
max_depth=4,
random_state=1)
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
tree_model.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
dot_data = export_graphviz(tree_model,
filled=True,
rounded=True,
class_names=['Setosa',
'Versicolor',
'Virginica'],
feature_names=['petal length',
'petal width'],
out_file=None)
graph = graph_from_dot_data(dot_data)
graph.write_png('tree.png')