【源代码】
import tensorflow as tf
l2_reg = tf.keras.regularizers.l2(0.1) # 设置模型
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(30, activation='relu',
kernel_initializer='he_normal', kernel_regularizer=l2_reg),
tf.keras.layers.Dense(60, activation='relu',
kernel_initializer='he_normal', kernel_regularizer=l2_reg),
tf.keras.layers.Dense(60, activation='relu',
kernel_initializer='he_normal', kernel_regularizer=l2_reg),
tf.keras.layers.Dense(2, activation="softmax")
])
def random_batch(X, y, batch_size=32): # 随机抽取数据
idx = np.random.randint(len(X), size=batch_size)
Xx = np.array([X[i] for i in idx])
Yy = np.array([y[i] for i in idx])
return Xx, Yy
def print_status_bar(iteration, total, loss, metrics=None): # 输出状态
# print('iteration',iteration)
# print('total',total)
# print('loss',loss.result())
metrics = "-".join(["{}:{:4f}".format(m.name, m.result()) for m in [loss] + (metrics or [])])
# print('metrics',metrics)
# print("===============")
end = "" if iteration < total else "\n"
print("\r{}/{}-".format(iteration, total) + metrics, end=end)
import numpy as np
import matplotlib.pyplot as plt
a = tf.random.normal([1000, 2], 8, 2) # 生成数据a类
a_lable = tf.cast([[0] for i in range(1000)], dtype=tf.int64)
b = tf.random.normal([1000, 2], 1, 2) # 生成数据b类
b_lable = tf.cast([[1] for i in range(1000)], dtype=tf.int64)
X_train = np.concatenate([a, b]) # 合并数据
y_train = np.concatenate([a_lable, b_lable])
y_train = tf.one_hot(y_train[:, 0], 2) # 将标签合转化为one-hot编码
n_epochs = 5 # 迭代次数
batch_size = 32 # 批次大小
n_steps = int(len(X_train) / 32) # 分批次
optimizer = t