Go语言源码分析CAS的实现和Java如出一辙

本文深入剖析了Go语言中并发机制的实现原理,特别是Compare And Swap (CAS) 操作的底层细节。Go语言通过调用CompareAndSwapInt32实现CAS,并在多核环境下确保数据的一致性和可见性。文章详细展示了Go语言如何利用LOCK+CMPXCHGL指令来实现无锁操作。

看了Go的源码CAS这块实现和java还是类似的。

关于Java的分析参考:Java使用字节码和汇编语言同步分析volatile,synchronized的底层实现

都是使用汇编指令:LOCK+CMPXCHGL

原因很简单:单核肯定不能发挥Go的高并发性能,Go如果要支持多核,必然遇到并发编程数据可见性的问题,底层必然加锁。

无锁并不等于没有锁,只能说无重量级的锁而已。

 

Go语言源码:

Go的CAS是调用CompareAndSwapInt32,

golang中的互斥锁定义在src/sync/mutex.go

// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
	// Fast path: grab unlocked mutex.
	if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
		if race.Enabled {
			race.Acquire(unsafe.Pointer(m))
		}
		return
	}

 

无锁操作CAS: Compare And Swap 比较并交换。

 源码在/src/runtime/internal/atomic/asm_amd64.s

可以看到实际上底层还是通过lock来实现,关于lock可以参考intel处理器指令。

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Note: some of these functions are semantically inlined
// by the compiler (in src/cmd/compile/internal/gc/ssa.go).

#include "textflag.h"

// bool Cas(int32 *val, int32 old, int32 new)
// Atomically:
//	if(*val == old){
//		*val = new;
//		return 1;
//	} else
//		return 0;
TEXT runtime∕internal∕atomic·Cas(SB),NOSPLIT,$0-17
	MOVQ	ptr+0(FP), BX
	MOVL	old+8(FP), AX
	MOVL	new+12(FP), CX
	LOCK
	CMPXCHGL	CX, 0(BX)
	SETEQ	ret+16(FP)
	RET

// bool	runtime∕internal∕atomic·Cas64(uint64 *val, uint64 old, uint64 new)
// Atomically:
//	if(*val == *old){
//		*val = new;
//		return 1;
//	} else {
//		return 0;
//	}
TEXT runtime∕internal∕atomic·Cas64(SB), NOSPLIT, $0-25
	MOVQ	ptr+0(FP), BX
	MOVQ	old+8(FP), AX
	MOVQ	new+16(FP), CX
	LOCK
	CMPXCHGQ	CX, 0(BX)
	SETEQ	ret+24(FP)
	RET

TEXT runtime∕internal∕atomic·Casuintptr(SB), NOSPLIT, $0-25
	JMP	runtime∕internal∕atomic·Cas64(SB)

TEXT runtime∕internal∕atomic·CasRel(SB), NOSPLIT, $0-17
	JMP	runtime∕internal∕atomic·Cas(SB)

TEXT runtime∕internal∕atomic·Loaduintptr(SB), NOSPLIT, $0-16
	JMP	runtime∕internal∕atomic·Load64(SB)

TEXT runtime∕internal∕atomic·Loaduint(SB), NOSPLIT, $0-16
	JMP	runtime∕internal∕atomic·Load64(SB)

TEXT runtime∕internal∕atomic·Storeuintptr(SB), NOSPLIT, $0-16
	JMP	runtime∕internal∕atomic·Store64(SB)

TEXT runtime∕internal∕atomic·Loadint64(SB), NOSPLIT, $0-16
	JMP	runtime∕internal∕atomic·Load64(SB)

TEXT runtime∕internal∕atomic·Xaddint64(SB), NOSPLIT, $0-24
	JMP	runtime∕internal∕atomic·Xadd64(SB)

// bool Casp1(void **val, void *old, void *new)
// Atomically:
//	if(*val == old){
//		*val = new;
//		return 1;
//	} else
//		return 0;
TEXT runtime∕internal∕atomic·Casp1(SB), NOSPLIT, $0-25
	MOVQ	ptr+0(FP), BX
	MOVQ	old+8(FP), AX
	MOVQ	new+16(FP), CX
	LOCK
	CMPXCHGQ	CX, 0(BX)
	SETEQ	ret+24(FP)
	RET

// uint32 Xadd(uint32 volatile *val, int32 delta)
// Atomically:
//	*val += delta;
//	return *val;
TEXT runtime∕internal∕atomic·Xadd(SB), NOSPLIT, $0-20
	MOVQ	ptr+0(FP), BX
	MOVL	delta+8(FP), AX
	MOVL	AX, CX
	LOCK
	XADDL	AX, 0(BX)
	ADDL	CX, AX
	MOVL	AX, ret+16(FP)
	RET

TEXT runtime∕internal∕atomic·Xadd64(SB), NOSPLIT, $0-24
	MOVQ	ptr+0(FP), BX
	MOVQ	delta+8(FP), AX
	MOVQ	AX, CX
	LOCK
	XADDQ	AX, 0(BX)
	ADDQ	CX, AX
	MOVQ	AX, ret+16(FP)
	RET

TEXT runtime∕internal∕atomic·Xadduintptr(SB), NOSPLIT, $0-24
	JMP	runtime∕internal∕atomic·Xadd64(SB)

TEXT runtime∕internal∕atomic·Xchg(SB), NOSPLIT, $0-20
	MOVQ	ptr+0(FP), BX
	MOVL	new+8(FP), AX
	XCHGL	AX, 0(BX)
	MOVL	AX, ret+16(FP)
	RET

TEXT runtime∕internal∕atomic·Xchg64(SB), NOSPLIT, $0-24
	MOVQ	ptr+0(FP), BX
	MOVQ	new+8(FP), AX
	XCHGQ	AX, 0(BX)
	MOVQ	AX, ret+16(FP)
	RET

TEXT runtime∕internal∕atomic·Xchguintptr(SB), NOSPLIT, $0-24
	JMP	runtime∕internal∕atomic·Xchg64(SB)

TEXT runtime∕internal∕atomic·StorepNoWB(SB), NOSPLIT, $0-16
	MOVQ	ptr+0(FP), BX
	MOVQ	val+8(FP), AX
	XCHGQ	AX, 0(BX)
	RET

TEXT runtime∕internal∕atomic·Store(SB), NOSPLIT, $0-12
	MOVQ	ptr+0(FP), BX
	MOVL	val+8(FP), AX
	XCHGL	AX, 0(BX)
	RET

TEXT runtime∕internal∕atomic·StoreRel(SB), NOSPLIT, $0-12
	JMP	runtime∕internal∕atomic·Store(SB)

TEXT runtime∕internal∕atomic·Store64(SB), NOSPLIT, $0-16
	MOVQ	ptr+0(FP), BX
	MOVQ	val+8(FP), AX
	XCHGQ	AX, 0(BX)
	RET

// void	runtime∕internal∕atomic·Or8(byte volatile*, byte);
TEXT runtime∕internal∕atomic·Or8(SB), NOSPLIT, $0-9
	MOVQ	ptr+0(FP), AX
	MOVB	val+8(FP), BX
	LOCK
	ORB	BX, (AX)
	RET

// void	runtime∕internal∕atomic·And8(byte volatile*, byte);
TEXT runtime∕internal∕atomic·And8(SB), NOSPLIT, $0-9
	MOVQ	ptr+0(FP), AX
	MOVB	val+8(FP), BX
	LOCK
	ANDB	BX, (AX)
	RET

这里还有其他处理器的汇编代码:

 其实这篇文章写得也还可以:Golang 源代码解析(一) 锁机制的研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值