【OpenCV】角点检测:Harris角点及Shi-Tomasi角点检测

本文详细介绍了计算机视觉中角点检测的重要性和不同类型的角点定义。着重讨论了Harris角点检测算法的原理与实现,包括其响应函数R的计算和阈值处理。同时,提到了Shi-Tomasi算法作为Harris算法的改进,通过寻找最小特征值的最大值来确定强角点。文中提供了OpenCV中实现这两种算法的代码示例,并展示了实践应用中的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

角点

特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系。点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(keypoint feature),或“兴趣点”(interest point),或“角点”(conrner)。

关于角点的具体描述可以有几种:

  • 一阶导数(即灰度的梯度)的局部最大所对应的像素点;
  • 两条及两条以上边缘的交点;
  • 图像中梯度值和梯度方向的变化速率都很高的点;
  • 角点处的一阶导数最大,二阶导数为零,指示物体边缘变化不连续的方向。

 

Harris角点检测

当一个窗口在图像上移动,在平滑区域如图(a),窗口在各个方向上没有变化。在边缘上如图(b),窗口在边缘的方向上没有变化。在角点处如图(c),窗口在各个方向上具有变化。Harris角点检测正是利用了这个直观的物理现象,通过窗口在各个方向上的变化程度,决定是否为角点。

将图像窗口平移[u,v]产生灰度变化E(u,v)

由:, 得到:

对于局部微小的移动量 [u,v],近似表达为:

其中M是 2*2 矩阵,可由图像的导数求得:

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值