树状数组学习笔记


【引言】

          在解题过程中,我们有时需要维护一个数组的前缀和S[n]=A[1]+A[2]+...+A[n]
          但是不难发现,如果我们修改了任意一个A[i],S[i]、S[i+1]...S[n]都会发生变化。
          可以说,每次修改A[i]后,调整前缀和S[]在最坏情况下会需要O(n)的时间。
          当n非常大时,程序会运行得非常缓慢。
          因此,这里我们引入“树状数组”,它的修改与求和都是O(logn)的,效率非常高。

【理论】

          为了对树状数组有个形象的认识,我们先看下面这张图。

如图所示,红色矩形表示的数组C[]就是我们所维护的树状数组

该图像的特征:构成了一个以C[8]为根结点,其他C[i]、A[j]为子结点的树。

对于数组A[]下标为奇数时,其上都仅仅只有一个C[]元素,即C[1] = A[1]、C[3] = A[3]、C[5] = A[5]等等

对于数组A[]下标为偶数时,这是一系列A[i]的和。

C[1] = A[1];C[1]的管辖范围为1

C[2] = A[2] + A[1] ;C[2]的管辖范围为2

C[3] = A[3];C[3]的管辖范围为1

C[4] = A[4] + A[3] + A[2] + A[1] ;C[4]的管辖范围为4

C[5] = A[5];C[5]的管辖范围为1

C[6] = A[6] + A[5] ;C[6]的管辖范围为2

C[7] = A[7];C[7]的管辖范围为1

C[8] = A[8] + A[7] + A[6] + A[5] + A[4] + A[3] + A[2] + A[1] ;C[8]的管辖范围为8

这里的管辖范围就是说C[]由几个A[]组成。

由上可得(S[]由C[]来表示):

S[1] = C[1]

S[2] = C[2]

S[3] = C[3] + C[2]

S[4] = C[4]

S[5] = C[5] + C[4]

S[6] = C[6] + C[4]

S[7] = C[7] + C[6] + C[4]

S[8] = C[8]

通过观察图像:S[i]表示为i之前所有最大子树的根结点C[]累加的和

上面所说的管辖范围就是下面列出来的2^k所表示的数

i                   i所对应的二进制                 
2^k(k-->i的二进制的末尾0的个数)     
1011
2102
3111
41004
51011
61102
71111
810008

2^k的求法:i 的二进制去掉所有高位的1,只保留最低位的1,如果只存在一个最高位的1,则 2^k 就是它本身。

如1(1),2(10),4(100),8(1000),16(10000)。即都是2的幂。

所以当我们判断一个数x是不是2的次幂时,只要判断x是否等于2^k就可以了,而2^k由位运算很容易求得(x & (-x))。


对于C[i]如何求得他的父节点?

由上表格推断,C[i]的父节点为C[i+2^k],也就是说将 i 的二进制的最末尾的1去掉,相邻的高位+1

对于C[i]如何求得他的下一个节点?

由上表格推断,C[i]的下一个节点是C[i-2^k],也就是说将i的二进制最末尾的1去掉。


由上:

C[i]表示A[i-2^k+1]到A[i]的和,而k则是i在二进制时末尾0的个数。

利用位运算,我们可以直接计算出2 ^ k = i & (i ^ (i - 1)) = (i & (-i)),所以C[i]的父节点为C[i + i & (-i)]。

这个k(i的二进制表示末尾0的个数)就是该节点在树中的高度,因而这个树的高度不会超过logn。
所以,当我们修改A[i]的值时,可以从C[i]往根节点一路上溯,调整这条路上的所有C[]即可,这个操作的复杂度在最坏情况下就是树的高度即O(logn)。  

而对于求数列的前n项和S[n],只需找到C[n]以前(包括C[n])的所有最大子树,把其根节点的C[]加起来即可。

不难发现,这些子树的数目是n在二进制表示时1的个数。因此,求和操作的复杂度也是O(logn)。


         

在最后,我们将给出一些树状数组的实现代码,希望读者能够仔细体会其中的细节。

【代码】

  求最小幂2^k:

int LowBit(int x) 
{ 
    return x & (-x); 
} 

求前n项和:

int getSum(int pos) 
{ 
    int sum = 0; 
    while(pos > 0) 
    { 
        sum += arr[pos]; 
        pos -= LowBit(pos); 
    } 
    return sum; 
} 

对某个元素进行加法操作: 

void update(int pos , int val) 
{ 
    while(pos <= n) 
    { 
          arr[pos] += val; 
          pos += LowBit(pos); 
    } 
} 


参考:

http://blog.youkuaiyun.com/int64ago/article/details/7429868

http://www.hawstein.com/posts/binary-indexed-trees.html

https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

N3verL4nd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值