洛谷P2738 [USACO4.1]篱笆回路Fence Loops(Floyed求最小环)

本文介绍了一个关于农夫布朗牧场篱笆分割的问题,并通过Floyd算法求解最小周长的区域。文章提供了完整的C++代码实现,展示了如何将篱笆的连接关系转化为节点之间的距离矩阵,最终利用Floyd算法找出所有可能的环形区域中周长最小的一个。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Floyd 多源最短路 && 传递闭包 && 最小环:http://blog.youkuaiyun.com/wzw1376124061/article/details/69870161

题目描述

农夫布朗的牧场上的篱笆已经失去控制了。它们分成了1~200英尺长的线段。只有在线段的端点处才能连接两个线段,有时给定的一个端点上会有两个以上的篱笆。结果篱笆形成了一张网分割了布朗的牧场。布朗想将牧场恢复原样,出于这个考虑,他首先得知道牧场上哪一块区域的周长最小。 布朗将他的每段篱笆从1到N进行了标号(N=线段的总数)。他知道每段篱笆有如下属性:

该段篱笆的长度

该段篱笆的一端所连接的另一段篱笆的标号

该段篱笆的另一端所连接的另一段篱笆的标号

幸运的是,没有篱笆连接它自身。对于一组有关篱笆如何分割牧场的数据,写一个程序来计算出所有分割出的区域中最小的周长。

例如,标号1~10的篱笆由下图的形式组成(下面的数字是篱笆的标号):

           1
   +---------------+
   |\             /|
  2| \7          / |
   |  \         /  |
   +---+       /   |6
   | 8  \     /10  |
  3|     \9  /     |
   |      \ /      |
   +-------+-------+
       4       5

上图中周长最小的区域是由2,7,8号篱笆形成的。

输入输出格式

输入格式:

第1行: N (1 <= N <= 100)

第2行到第3*N+1行: 每三行为一组,共N组信息:

每组信息的第1行有4个整数: s, 这段篱笆的标号(1 <= s <= N); Ls, 这段篱笆的长度 (1 <= Ls <= 255); N1s (1 <= N1s <= 8) 与本段篱笆的一端 所相邻的篱笆的数量; N2s与本段篱笆的另一端所相邻的篱笆的数量。 (1 <= N2s <= 8).

每组信息的的第2行有 N1s个整数, 分别描述与本段篱笆的一端所相邻的篱笆的标号。

每组信息的的第3行有N2s个整数, 分别描述与本段篱笆的另一端所相邻的篱笆的标号。

输出格式:

输出的内容为单独的一行,用一个整数来表示最小的周长。

输入输出样例

输入样例#1:
10
1 16 2 2
2 7
10 6
2 3 2 2
1 7
8 3
3 3 2 1
8 2
4
4 8 1 3
3
9 10 5
5 8 3 1
9 10 4
6
6 6 1 2 
5 
1 10
7 5 2 2 
1 2
8 9
8 4 2 2
2 3
7 9
9 5 2 3
7 8
4 5 10
10 10 2 3
1 6
4 9 5
输出样例#1:
12

说明

题目翻译来自NOCOW。

USACO Training Section 4.1

思路:重点在于预处理把边的编号转换为端点的编号,然后用Floyd求一遍最小环就可以了

/*************************************************************************
    > Author: wzw-cnyali
    > Created Time: 2017/4/9 19:07:01
 ************************************************************************/

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>

using namespace std;

typedef long long LL;

typedef unsigned long long uLL;

#define REP(i, a, b) for(register int i = (a), i##_end_ = (b); i <= i##_end_; ++ i)
#define DREP(i, a, b) for(register int i = (a), i##_end_ = (b); i >= i##_end_; -- i)
#define EREP(i, a) for(register int i = (be[a]); i != -1; i = nxt[i])
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define mem(a, b) memset((a), b, sizeof(a))

template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }

template <class T>
T read(T sum = 0, T fg = 0)
{
	char c = getchar();
	while(c < '0' || c > '9') { fg |= c == '-'; c = getchar(); }
	while(c >= '0' && c <= '9') { sum = sum * 10 + c - '0'; c = getchar(); }
	return fg ? -sum : sum;
}

const int inf = 0x3f3f3f3f;

const int Size = 100000;

const int maxn = 10;

const int maxm = 1000;

struct node
{
	int L_id, R_id; //该条路的左右端点编号
	int L[maxn], R[maxn]; //左右端点连接的路
	int Lsum, Rsum;
	int len; //该路的长度
}line[Size];
int id_cnt; //编号

int map[maxm][maxm];
int dist[maxm][maxm];

int floyd() //floyd求最小环
{
	int minCircle = inf;
	REP(k, 1, id_cnt)
	{
		REP(i, 1, k - 1) REP(j, 1, i - 1)
			chkmin(minCircle, dist[i][j] + map[i][k] + map[k][j]);
		REP(i, 1, id_cnt) REP(j, 1, id_cnt)
			chkmin(dist[i][j], dist[i][k] + dist[k][j]);
	}
	return minCircle;
}

int main()
{
#ifndef ONLINE_JUDGE
	freopen("input.in", "r", stdin);
	freopen("output.out", "w", stdout);
#endif
	int n = read<int>();
	REP(i, 1, n)
	{
		int id = read<int>();
		line[id].len = read<int>();
		line[id].Lsum = read<int>();
		line[id].Rsum = read<int>();
		REP(j, 1, line[id].Lsum)
			line[id].L[j] = read<int>();
		REP(j, 1, line[id].Rsum)
			line[id].R[j] = read<int>();
	}
	REP(i, 1, n) //枚举每一个端点
	{
		if(!line[i].L_id) line[i].L_id = ++id_cnt; //第i条边左端点编号
		REP(j, 1, line[i].Lsum) //枚举第i条边左端点连接的边j
		{
			int x = line[i].L[j]; bool flag = 0;
			REP(k, 1, line[x].Lsum) //判断第j条边在第i条边的左边还是右边
				if(line[x].L[k] == i) { flag = 1; break; }

			if(flag) line[x].L_id = line[i].L_id;
			else line[x].R_id = line[i].L_id;
		}
		//第i条边右端点编号,处理相同
		if(!line[i].R_id) line[i].R_id = ++id_cnt;
		REP(j, 1, line[i].Rsum)
		{
			int x = line[i].R[j]; bool flag = 0;
			REP(k, 1, line[x].Lsum)
				if(line[x].L[k] == i) { flag = 1; break; }

			if(flag) line[x].L_id = line[i].R_id;
			else line[x].R_id = line[i].R_id;
		}
	}

	mem(dist, inf);
	mem(map, inf);

	REP(i, 1, n) //每条路存入map中
	{
		int L_id = line[i].L_id;
		int R_id = line[i].R_id;
		int len = line[i].len;
		map[R_id][L_id] = map[L_id][R_id] = len;
		dist[R_id][L_id] = dist[L_id][R_id] = len;
	}
	printf("%d\n", floyd());
    return 0;
}

<think>题目:洛谷P1700 [USACO19OPEN] Milk Factory B 题目描述:有一个牛奶加工厂,有N个站点(编号1到N),站点之间有传送带,传送带是单向的。现在要找一个站点,使得从这个站点出发,能够到达所有其他站点(允许通过传送带间接到达)。如果存在多个这样的站点,则选择编号最小的。如果没有这样的站点,则输出-1。 输入格式: 第一行:整数N(1≤N≤100),表示站点的数量。 接下来N-1行:每行两个整数a和b,表示有一条从a到b的传送带(注意是单向边,方向是a->b)。 输出格式: 输出满足条件的站点编号,如果没有则输出-1。 分析: 题目要找到一个点,使得从这个点出发可以到达所有其他点。实际上,这就是在图中寻找一个“根”节点,使得从该节点出发可以遍历整个图(注意图是有向的,且边数为N-1,所以图是树?但注意:题目中并没有保证是树,因为可能有多个父节点?但题目只给了N-1条边,所以实际上是一个有向图,且边数比节点数少1,因此它可能是一个有向无环图(DAG)或者有环?但题目没有说,不过N-1条边,如果有环则无法形成连通图(因为树是无环的),但这里是有向图,所以可能形成树或者森林?然而题目要能够到达所有其他站点,所以图必须是连通的(弱连通?)。 注意:题目中只给出了N-1条边,所以整个图是一个有向图,且边数比节点数少1,那么它可能是一棵有向树(但方向不一定是从根向叶子,因为题目输入是a->b,所以可能是从a指向b)。但是,题目没有保证边的方向是从根向叶子,所以我们需要考虑。 由于图只有N-1条边,所以整个图可能是一个有向无环图(DAG)并且是一棵树(即基图是一棵树,但方向任意)。但注意:树中边的方向通常是从根向叶子,但这里可能反过来?所以我们需要判断。 然而,题目要的是:存在一个点,从它出发可以到达所有其他点。那么我们可以尝试对每一个点进行DFS/BFS,检查从这个点出发能否遍历所有节点。因为N最大为100,所以对每个点做一次DFS/BFS,总时间复杂度为O(N*(N+E)) = O(100*(100+99))100*200 = 20000,可以接受。 步骤: 1. 读入N。 2. 构建图:使用邻接表。 3. 对于每个节点i(从1到N),执行BFS/DFS,记录从i出发能够访问到的节点数。 4. 如果能够访问到所有N个节点(包括自己),则记录这个节点。 5. 在记录的所有节点中,选择编号最小的输出;如果没有,输出-1。 注意:图是有向的,所以边a->b,只能从a到b,不能反向。 代码实现: 我们将使用BFS,因为BFS使用队列,非递归,且对于100个节点来说很安全。 具体步骤: 1. 读入N,然后读入N-1行,每行两个整数a和b,构建有向边:graph[a].push_back(b) (注意:题目中传送带方向是a->b)。 2. 对于每个节点i(1~N): 初始化visited数组(大小为N+1,全部为false),初始化队列,将i入队,标记visited[i]=true。 然后进行BFS:每次从队列中取出一个节点u,遍历u的所有邻居v,如果v没有被访问过,则标记并加入队列。 统计访问过的节点数(count)。 3. 如果count等于N,则说明节点i满足条件。 4. 遍历完所有节点后,如果存在满足条件的节点,输出最小的节点编号;否则输出-1。 注意:可能存在多个满足条件的节点,我们只需要最小的那个,所以一旦找到一个满足条件的节点,我们可以记录它的编号,然后继续找,最后取最小的(或者我们按节点编号从小到大遍历,那么第一个满足条件的节点就是最小的,但题目要多个时取最小,所以我们可以按节点编号从小到大遍历,找到第一个满足条件的就输出并退出?不行,因为可能有多个,但我们需要最小的,所以即使找到一个,后面可能有更小的?不对,节点编号是从1到N,我们从小到大遍历,所以第一个满足条件的节点就是最小的节点?不对,因为节点编号是1,2,...,N,我们按节点编号顺序遍历,那么第一个满足条件的节点就是最小的节点吗?但是,我们遍历的顺序是1,2,...,N,所以当我们找到第一个满足条件的节点时,它一定是编号最小的(因为编号小的先遍历)。所以我们可以这样:从1到N遍历,一旦找到一个节点满足条件,就记录答案并跳出循环?不行,因为可能节点1不满足,节点2满足,但节点3也满足,而节点2比节点3小,所以我们应该记录所有满足条件的节点?然后取最小值?或者因为我们是按从小到大的顺序遍历,所以第一个满足条件的节点就是最小的?不对,因为节点1满足条件,那么它就是最小的;节点1不满足,节点2满足,那么节点2就是当前最小的;节点3满足条件但是比节点2大,所以我们在遍历到节点2时就可以记录并继续找更小的?不对,因为节点编号是递增的,后面不会出现比2更小的节点了。所以当我们按节点编号从小到大遍历时,第一个满足条件的节点就是最小的节点,可以直接输出并结束?不对,因为可能节点1不满足,节点2满足,然后节点3也满足,但是节点2比节点3小,所以我们在节点2满足时就可以输出节点2并结束循环(因为后面节点编号都比2大,所以最小的就是2)。因此,我们可以按节点编号从小到大遍历,一旦遇到一个满足条件的节点,就输出它并结束程序(因为后面即使有满足条件的节点,编号也更大,所以第一个满足条件的节点就是最小的)。如果没有遇到,最后输出-1。 但是,如果我们从1到N遍历,那么第一个满足条件的节点就是最小的,所以我们可以: for (int i=1; i<=N; i++) { 进行BFS,统计从i出发能到达的节点数count if (count == N) { cout << i << endl; return 0; // 结束程序 } } // 如果循环结束还没找到 cout << -1 << endl; 这样是可行的。 但是,注意:题目要是“如果存在多个这样的站点,则选择编号最小的”,而我们的遍历顺序是1到N,所以第一个找到的满足条件的节点就是最小的,然后直接输出并结束程序。 代码实现: 注意:图可能有环吗?题目中只有N-1条边,所以不可能有环(因为环的存在需要至少与节点数相同的边数,比如一个环需要n条边,而这里只有n-1条边),所以图是无环的,因此不会出现重复访问的问题(但我们的BFS已经用visited数组避免重复访问了,所以即使有环也没关系)。 但是,图可能是不连通的吗?题目要能够到达所有站点,所以如果图不连通,那么任何一个节点出发都不可能到达所有节点。所以我们的BFS在某个节点开始,如果访问的节点数不足N,就跳过。 由于边数只有N-1,所以整个图可能是一个有向树(基图是无向树,但边有方向)。但是,方向可能不是从根向叶子,所以可能有些节点有多个入度?题目没有说,所以按照输入处理。 我们按照上述思路编写代码。 注意:输入是N-1行,每行两个整数a和b,表示a->b的边。 代码示例:</think>### 解法思路 对于洛谷P1700 [USACO19OPEN] Milk Factory B 问题,需要找到一个站点(节点),使得从该站点出发能通过单向传送带到达所有其他站点。由于图只有 N-1 条边(树形结构),可能存在多个解,需输出编号最小的解,若无解则输出 -1。 #### 关键点 1. **图建模**:将站点视为节点,传送带视为有向边(a→b)。 2. **连通性检查**:对每个节点进行 BFS/DFS,检查是否能访问所有节点。 3. **最优选择**:从小到大遍历节点,找到第一个满足条件的节点即可(因编号递增)。 ### C++ 代码实现 ```cpp #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; int main() { int N; cin >> N; vector<vector<int>> graph(N + 1); // 邻接表(索引0不使用) // 构建有向图(注意:共N-1条边) for (int i = 0; i < N - 1; i++) { int a, b; cin >> a >> b; graph[a].push_back(b); // 添加边 a→b } // 检查每个节点作为起点 for (int start = 1; start <= N; start++) { vector<bool> visited(N + 1, false); // 访问标记数组 queue<int> q; int count = 0; // 统计可达节点数 // BFS初始化 q.push(start); visited[start] = true; while (!q.empty()) { int u = q.front(); q.pop(); count++; // 遍历当前节点的所有出边 for (int v : graph[u]) { if (!visited[v]) { visited[v] = true; q.push(v); } } } // 若可达所有节点,输出并结束 if (count == N) { cout << start << endl; return 0; } } // 无解情况 cout << -1 << endl; return 0; } ``` ### 代码解释 1. **输入处理**: - 读取站点数 `N`。 - 构建邻接表 `graph`,存储每条有向边(`a→b` 对应 `graph[a].push_back(b)`)。 2. **BFS遍历**: - 对每个节点 `start` (1 到 N) 进行 BFS: - 初始化 `visited` 数组记录访问状态。 - 使用队列 `q` 进行广度优先搜索,统计可达节点数 `count`。 - 若 `count == N`,说明从 `start` 可达所有节点,输出 `start` 并结束程序。 3. **无解处理**: - 若遍历完所有节点均未找到解,输出 `-1`。 ### 复杂度分析 - **时间复杂度**:O(),最坏情况下对每个节点进行 BFS(每个节点遍历所有边)。 - **空间复杂度**:O(N),用于存储邻接表和访问标记。 ### 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值