poj2632--Crashing Robots

本文介绍了一个关于机器人在仓库中移动并避免碰撞的问题。通过模拟不同指令下机器人的移动路径,确保它们不会相互碰撞或撞到墙壁。文章提供了一种解决方案,使用结构体来跟踪每个机器人的位置和状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Crashing Robots
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7383 Accepted: 3240

Description

In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving. 
A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot.

Input

The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction. 
The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively. 
Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position. 
 
Figure 1: The starting positions of the robots in the sample warehouse

Finally there are M lines, giving the instructions in sequential order. 
An instruction has the following format: 
< robot #> < action> < repeat> 
Where is one of 
  • L: turn left 90 degrees, 
  • R: turn right 90 degrees, or 
  • F: move forward one meter,

and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move.

Output

Output one line for each test case: 
  • Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.) 
  • Robot i crashes into robot j, if robots i and j crash, and i is the moving robot. 
  • OK, if no crashing occurs.

Only the first crash is to be reported.

Sample Input

4
5 4
2 2
1 1 E
5 4 W
1 F 7
2 F 7
5 4
2 4
1 1 E
5 4 W
1 F 3
2 F 1
1 L 1
1 F 3
5 4
2 2
1 1 E
5 4 W
1 L 96
1 F 2
5 4
2 3
1 1 E
5 4 W
1 F 4
1 L 1
1 F 20

Sample Output

Robot 1 crashes into the wall
Robot 1 crashes into robot 2
OK
Robot 1 crashes into robot 2

Source

Nordic 2005
模拟题,只是比较多,我用了两个结构体,不知道还有没有好的办法
1 转向
2 向当前方向走num步 ,在这之中会有碰到其他的机器人,或是在最后撞墙。
3 只要在一步操作后出现问题,以后的操作都不用判断。

#include <stdio.h>
struct node
{
    int flag ;
    int n ;
    char s ;
} p[102][102];
struct no
{
    int x , y ;
} q[102];
int main()
{
    int t ;
    char str[] = "SENW" ;
    scanf("%d", &t);
    while(t--)
    {
        int a , b , i , j  ;
        scanf("%d %d", &b, &a);
        for(i = 1 ; i <= a ; i++)
            for(j = 1 ; j <= b ; j++)
            {
                p[i][j].flag = 0 ;
            }
        int n , m , num ;
        char s ;
        scanf("%d %d", &n, &m);
        for(i = 1 ; i <= n ; i++)
        {
            int x , y ;
            scanf("%d %d%*c%c", &y, &x, &s);
            q[i].x = x ;
            q[i].y = y ;
            p[x][y].flag = 1 ;
            p[x][y].n = i ;
            p[x][y].s = s ;
        }
        int flag = 1 ;
        while(m--)
        {
            scanf("%d%*c%c %d", &n, &s, &num);
            if(flag)
            {
                if(s == 'L')
                {
                    num %= 4 ;
                    j = 0 ;
                    while(1)
                    {
                        if( p[ q[n].x ][ q[n].y ].s == str[j] )
                            break;
                        else
                            j++ ;
                    }
                    j += num ;
                    if( j > 3)
                        j -= 4 ;
                    p[ q[n].x ][ q[n].y ].s = str[j] ;
                }
                else if(s == 'R')
                {
                    num %= 4 ;
                    j = 0 ;
                    while(1)
                    {
                        if( p[ q[n].x ][ q[n].y ].s == str[j] )
                            break;
                        else
                            j++ ;
                    }
                    j -= num ;
                    if( j < 0)
                        j += 4 ;
                    p[ q[n].x ][ q[n].y ].s = str[j] ;
                }
                else
                {
                    int k = 0 ;
                    while(1)
                    {
                        if( p[ q[n].x ][ q[n].y ].s == str[k] )
                            break;
                        else
                            k++ ;
                    }
                    if(k == 0)
                    {
                        for(i = q[n].x-1 ; i >= q[n].x - num ; i--)
                        {
                            if(i == 0)
                            {
                                printf("Robot %d crashes into the wall\n", n);
                                flag = 0 ;
                                break;
                            }
                            else if( p[i][ q[n].y ].flag )
                            {
                                printf("Robot %d crashes into robot %d\n", n, p[i][ q[n].y ].n ) ;
                                flag = 0 ;
                                break;
                            }
                        }
                        if(flag)
                        {
                            p[ q[n].x - num ][ q[n].y ] = p[ q[n].x ][ q[n].y ] ;
                            p[ q[n].x ][ q[n].y ].flag = 0 ;
                            q[n].x = q[n].x - num ;
                        }
                    }
                    else if(k == 1)
                    {
                        for(i = q[n].y+1 ; i <= q[n].y + num ; i++)
                        {
                            if(i == b+1)
                            {
                                printf("Robot %d crashes into the wall\n", n);
                                flag = 0 ;
                                break;
                            }
                            else if( p[ q[n].x ][i].flag )
                            {
                                printf("Robot %d crashes into robot %d\n", n, p[ q[n].x ][i].n ) ;
                                flag = 0 ;
                                break;
                            }
                        }
                        if(flag)
                        {
                            p[ q[n].x  ][ q[n].y + num ] = p[ q[n].x ][ q[n].y ] ;
                            p[ q[n].x ][ q[n].y ].flag = 0 ;
                            q[n].y = q[n].y + num ;
                        }
                    }
                    else if(k == 2)
                    {
                        for(i = q[n].x+1 ; i <= q[n].x + num ; i++)
                        {
                            if(i == a+1)
                            {
                                printf("Robot %d crashes into the wall\n", n);
                                flag = 0 ;
                                break;
                            }
                            else if( p[i][ q[n].y ].flag )
                            {
                                printf("Robot %d crashes into robot %d\n", n, p[i][ q[n].y ].n ) ;
                                flag = 0 ;
                                break;
                            }
                        }
                        if(flag)
                        {
                            p[ q[n].x + num ][ q[n].y ] = p[ q[n].x ][ q[n].y ] ;
                            p[ q[n].x ][ q[n].y ].flag = 0 ;
                            q[n].x = q[n].x + num ;
                        }
                    }
                    else if(k == 3)
                    {
                        for(i = q[n].y-1 ; i >= q[n].y - num ; i--)
                        {
                            if(i == 0)
                            {
                                printf("Robot %d crashes into the wall\n", n);
                                flag = 0 ;
                                break;
                            }
                            else if( p[ q[n].x ][i].flag )
                            {
                                printf("Robot %d crashes into robot %d\n", n, p[ q[n].x ][i].n ) ;
                                flag = 0 ;
                                break;
                            }
                        }
                        if(flag)
                        {
                            p[ q[n].x ][ q[n].y - num ] = p[ q[n].x ][ q[n].y ] ;
                            p[ q[n].x ][ q[n].y ].flag = 0 ;
                            q[n].y = q[n].y - num ;
                        }
                    }
                }
            }
        }
        if(flag)
            printf("OK\n");
    }
}


内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值