最近阅读了《Neural networks and deep learning》这本书(online book,还没出版),算是读得比较仔细,前面几章涉及的内容比较简单,我着重看了第三章《Improving the way neural networks learn》,涉及深度神经网络优化和训练的各种技术,对第三章做了详细的笔记(同时参考了其他资料,以后读到其他相关的论文资料也会补充或更改),欢迎有阅读这本书的同学一起交流。以下属个人理解,如有错误请指正。
What this book is about?
这本书中的代码基于Python实现,从MNIST这个例子出发,讲人工神经网络(Neural networks),逐步深入到深度学习(Deep Learning),以及代码实现,一些优化方法。适合作为入门书。
1、 Using neural nets to recognize handwritten digits
文章概要
用人工神经网络来识别MNIST数据集,Python实现,仅依赖NumPy库。
2、 How the backpropagation algorithm works
文章概要
上一章没有讨论怎么优化NN,当时并没有讨论怎么计算损失函数的梯度,没有讨论优化过程,这就是这一章要讲的BP算法。
BP算法在1970s出现,但直到1986年Hinton的