题意:
找出一副图中,其他点都可以到达的点的个数。
思路:
设满足条件的点为v,则v所在的强连通分量的出度一定为0。
然而如果存在多于一个强连通分量出度为0则说明无解,输出0,否则输出出度为0的强连通分量中点的个数。
代码(2372K,532MS):
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
int n, m, t;
int flag[10002];
vector<int> edges[10002];
stack<int> s;
int dfn[10002];
int low[10002];
int vis[10002];
int col[10002];
int cnt, num;
void dfs(int u) {
s.push(u);
vis[u] = 1;
dfn[u] = low[u] = ++cnt;
for (int i = 0; i < edges[u].size(); i++) {
int v = edges[u][i];
if (!dfn[v]) {
dfs(v);
low[u] = min(low[u], low[v]);
} else if (vis[v])
low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) {
num++;
do {
t = s.top();
s.pop();
vis[t] = 0;
col[t] = num;
} while (t != u);
}
}
void tarjan() {
while (!s.empty()) s.pop();
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(vis, 0, sizeof(vis));
memset(col, 0, sizeof(col));
cnt = num = 0;
for (int i = 1; i <= n; i++)
if (!dfn[i]) dfs(i);
}
int main() {
while (~scanf("%d %d", &n, &m)) {
for (int i = 0; i <= n; i++)
edges[i].clear();
int a, b;
for (int i = 0; i < m; i++) {
scanf("%d %d", &a, &b);
edges[a].push_back(b);
}
tarjan();
memset(flag, 0, sizeof(flag));
for (int i = 1; i <= n; i++)
for (int j = 0; j < edges[i].size(); j++)
if (col[i] != col[edges[i][j]])
flag[col[i]] = 1;
int tot = 0;
for (int i = 1; i <= num; i++)
if (!flag[i]) tot++;
if (tot != 1) printf("0\n");
else {
int ans = 0;
for (int i = 1; i <= n; i++)
if (!flag[col[i]]) ans++;
printf("%d\n", ans);
}
}
return 0;
}