The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
Analysis:
两个解法。
第一,DFS
递归遍历所有可能,然后累加计算,直至到K为止。
第二,数学解法。
假设有n个元素,第K个permutation是
a1, a2, a3, ..... ..., an
那么a1是哪一个数字呢?
那么这里,我们把a1去掉,那么剩下的permutation为
a2, a3, .... .... an, 共计n-1个元素。 n-1个元素共有(n-1)!组排列,那么这里就可以知道
设变量K1 = K
a1 = K1 / (n-1)!
同理,a2的值可以推导为
a2 = K2 / (n-2)!
K2 = K1 % (n-1)!
.......
a(n-1) = K(n-1) / 1!
K(n-1) = K(n-2) /2!
an = K(n-1)
Java
public String getPermutation(int n, int k) {
int []num = new int[n];
int permCount = 1;
for(int i=0;i<n;i++){
num[i] = i+1;
permCount*=(i+1);
}
k--;
StringBuilder target = new StringBuilder();
for(int i=0;i<n;i++){
permCount = permCount/(n-i);
int choosed = k/permCount;
target.append(num[choosed]);
for(int j=choosed;j<n-i-1;j++){
num[j] = num[j+1];
}
k = k%permCount;
}
return target.toString();
}
c++
string getPermutation(int n, int k) {
vector<int>num(n);
int permCount = 1;
for(int i=0;i<n;i++){
num[i] = i+1;
permCount*=(i+1);
}
k--;
string target;
for(int i=0;i<n;i++){
permCount = permCount/(n-i);
int choosed = k/permCount;
target.push_back(num[choosed]+'0');
for(int j=choosed;j<n-i;j++){
num[j] = num[j+1];
}
k = k%permCount;
}
return target;
}