Counting Bloom Filter

本文介绍了Counting Bloom Filter的基本原理及其如何通过增加计数器的方式解决标准Bloom Filter不支持删除操作的问题,并探讨了其存储空间的需求。
部署运行你感兴趣的模型镜像

Counting Bloom Filter

焦萌 2007130

 

从前面几篇对Bloom Filter的介绍可以看出,标准的Bloom Filter是一种很简单的数据结构,它只支持插入和查找两种操作。在所要表达的集合是静态集合的时候,标准Bloom Filter可以很好地工作,但是如果要表达的集合经常变动,标准Bloom Filter的弊端就显现出来了,因为它不支持删除操作。

 

Counting Bloom Filter的出现解决了这个问题,它将标准Bloom Filter位数组的每一位扩展为一个小的计数器(Counter),在插入元素时给对应的kk为哈希函数个数)个Counter的值分别加1,删除元素时给对应的kCounter的值分别减1Counting Bloom Filter通过多占用几倍的存储空间的代价,给Bloom Filter增加了删除操作。下一个问题自然就是,到底要多占用几倍呢?

 

 

我们先计算第iCounter被增加j次的概率,其中n为集合元素个数,k为哈希函数个数,mCounter个数(对应着原来位数组的大小):

上面等式右端的表达式中,前一部分表示从nk次哈希中选择j次,中间部分表示j次哈希都选中了第iCounter,后一部分表示其它nk – j次哈希都没有选中第iCounter。因此,第iCounter的值大于j的概率可以限定为:

上式第二步缩放中应用了估计阶乘的斯特林公式:

Bloom Filter概念和原理一文中,我们提到过k的最优值为(ln2)m/n,现在我们限制k ≤ (ln2)m/n,就可以得到如下结论:

如果每个Counter分配4位,那么当Counter的值达到16时就会溢出。这个概率为:

这个值足够小,因此对于大多数应用程序来说,4位就足够了。

 

 关于Counting Bloom Filter最早的论文:Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol

您可能感兴趣的与本文相关的镜像

Langchain-Chatchat

Langchain-Chatchat

AI应用
Langchain

Langchain-Chatchat 是一个基于 ChatGLM 等大语言模型和 Langchain 应用框架实现的开源项目,旨在构建一个可以离线部署的本地知识库问答系统。它通过检索增强生成 (RAG) 的方法,让用户能够以自然语言与本地文件、数据库或搜索引擎进行交互,并支持多种大模型和向量数据库的集成,以及提供 WebUI 和 API 服务

评论 6
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值