Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.
If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).
The replacement must be in-place, do not allocate extra memory.
Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3 → 1,3,2
3,2,1 → 1,2,3
If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).
The replacement must be in-place, do not allocate extra memory.
Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
分析:
下一个排列。
分析:
从后往前,找到最后一个破坏降序的元素,下标为low,此时 ( low, num.length-1 ]中的元素必然是降序排列的;
从后往前,在(low, num.length-1] 中找到最后一个比 num[low] 大的元素,下标为high,这num[high] 则为可以与 num[low] 交换的最低位元素;
交换low和high位置的元素,同时把low之后的元素由降序变为升序,则就是下一个排列。
public class Solution {
public void nextPermutation(int[] num) {
//check para
if(num == null || num.length <=1)
return;
int low=-1;
int high=-1;
int len = num.length;
for(int i=len-2; i>=0; i--){
if(num[i] < num[i+1]){
low = i;
break;
}
}
//find the low index
if(low != -1){
for(int j=len-1; j>low; j--){
if(num[j] > num[low]){
high = j;
break;
}
}
//exchange low and high
int temp = num[low];
num[low] = num[high];
num[high] = temp;
//reverse low+1 to end
for(int k=0; k<=(len-low-2)/2; k++){
temp = num[low+1+k];
num[low+1+k] = num[len-1-k];
num[len-1-k] = temp;
}
return;
}
//reverse
for(int k=0; k<=(len-1)/2; k++){
int temp = num[k];
num[k] = num[len-1-k];
num[len-1-k] = temp;
}
}
}