嗯,今天其实在看HtttpProcessor的实现,但是突然想到了以前在看poller的时候看到了有闭锁,用于控制当前connector的连接数量,嗯,那就顺便把这部分来看了。。。
在Tomcat中,通过继承AbstractQueuedSynchronizer来实现了自己的同步工具,进而来实现了一个用于控制连接数量的闭锁。。LimitLatch。。
这里就需对AbstractQueuedSynchronizer有一些初步的了解。。。
首先它concurrent类库中提供的一个用于构建自己的同步工具的一个工具类。。可以通过继承他来快速的完成一个同步类的实现
(1)acquireSharedInterruptibly()方法,用于以共享的方式来获取锁,如果暂时无法获取,将会将线程挂起到队列,进行阻塞,对于这个方法是否最终能获取锁,是通过tryAcquireShared()方法的返回来定义的,这个方法需要自己实现。。。如果能获取锁,那么返回1,否则返回-1.。。
(2)releaseShared()方法。以共享的方法释放一个锁,这样前面提到的挂起的线程将会唤醒,进而重新尝试获取锁。。。
好啦,接下来就来看看LimitLatch的定义吧,直接上代码好了,。,。代码还是很简单的。。
//其实是通过AbstractQueuedSynchronizer来构建的
public class LimitLatch {
private static final Log log = LogFactory.getLog(LimitLatch.class);
//构建Sync类型,实现基本的同步,以及阻塞。。
private class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 1L;
public Sync() {
}
@Override
//用于增加计数,如果计数增加之后小于最大的,那么返回1,不会阻塞,否则将会返回-1阻塞
protected int tryAcquireShared(int ignored) { //调用acquiredShared方法的时候会调用这个方法来返回状态,如果返回1,那么表示获取成功,返回-1表示获取失败,将会阻塞
long newCount = count.incrementAndGet(); //先增加计数
if (!released && newCount > limit) { //如果当前已经超过了最大的限制
// Limit exceeded
count.decrementAndGet(); //减少计数
return -1; //返回-1,将阻塞当前线程
} else {
return 1;
}
}
@Override
//用于减少计数
protected boolean tryReleaseShared(int arg) {
count.decrementAndGet();
return true;
}
}
private final Sync sync; //同步对象
private final AtomicLong count; //计数器
private volatile long limit; //最大的数量
private volatile boolean released = false; //是否全部释放
/**
* Instantiates a LimitLatch object with an initial limit.
* @param limit - maximum number of concurrent acquisitions of this latch
*/
public LimitLatch(long limit) {
this.limit = limit; //最大限制
this.count = new AtomicLong(0);
this.sync = new Sync(); //sync 对象
}
/**
* Returns the current count for the latch
* @return the current count for latch
*/
public long getCount() {
return count.get();
}
/**
* Obtain the current limit.
*/
public long getLimit() {
return limit;
}
/**
* Sets a new limit. If the limit is decreased there may be a period where
* more shares of the latch are acquired than the limit. In this case no
* more shares of the latch will be issued until sufficient shares have been
* returned to reduce the number of acquired shares of the latch to below
* the new limit. If the limit is increased, threads currently in the queue
* may not be issued one of the newly available shares until the next
* request is made for a latch.
*
* @param limit The new limit
*/
public void setLimit(long limit) {
this.limit = limit;
}
/**
* Acquires a shared latch if one is available or waits for one if no shared
* latch is current available.
*/
//增加计数,如果太大,那么等等待
public void countUpOrAwait() throws InterruptedException {
if (log.isDebugEnabled()) {
log.debug("Counting up["+Thread.currentThread().getName()+"] latch="+getCount());
}
sync.acquireSharedInterruptibly(1);
}
/**
* Releases a shared latch, making it available for another thread to use.
* @return the previous counter value
*/
//减少计数
public long countDown() {
sync.releaseShared(0); //释放
long result = getCount();
if (log.isDebugEnabled()) {
log.debug("Counting down["+Thread.currentThread().getName()+"] latch="+result);
}
return result;
}
/**
* Releases all waiting threads and causes the {@link #limit} to be ignored
* until {@link #reset()} is called.
*/
//通过将released设置为true,将会释放所有的线程,知道reset了
public boolean releaseAll() {
released = true;
return sync.releaseShared(0);
}
/**
* Resets the latch and initializes the shared acquisition counter to zero.
* @see #releaseAll()
*/
//重制
public void reset() {
this.count.set(0);
released = false;
}
/**
* Returns <code>true</code> if there is at least one thread waiting to
* acquire the shared lock, otherwise returns <code>false</code>.
*/
//当前是否有线程等待
public boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
/**
* Provide access to the list of threads waiting to acquire this limited
* shared latch.
*/
//获取所有等待的线程
public Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
}
代码应该还是很简单的吧,而且注释也算是说的比较清楚。。。其实是构建了一个继承自AbstractQueuedSynchronizer的Sync对象,通过它来进行真正的同步功能。。。然后通过一个原子的整数计数器,和一个最大值,来判断当前是否可以获取锁
好啦,这里来看看Tomcat是如何通过LimitLatch来控制连接数量的吧,先来看看NioEndpoint的启动方法:
//启动当前的endpoint
public void startInternal() throws Exception {
if (!running) {
running = true; //设置表示为,表示已经看是运行了
paused = false; //没有暂停
// Create worker collection
if ( getExecutor() == null ) { //如果没有executor,那么创建
createExecutor(); //创建executor
}
initializeConnectionLatch(); //初始化闭锁,用于控制连接的数量
// Start poller threads
pollers = new Poller[getPollerThreadCount()]; //根据设置的poller数量来创建poller对象的数组
for (int i=0; i<pollers.length; i++) {
pollers[i] = new Poller(); // 创建poller对象
Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-"+i); // 创建相应的poller线程
pollerThread.setPriority(threadPriority);
pollerThread.setDaemon(true);
pollerThread.start(); //启动poller
}
startAcceptorThreads(); //启动acceptor
}
}
这里调用了initializeConnectionLatch方法来初始化闭锁,来看看吧:
//初始化闭锁,用于控制连接的数量
protected LimitLatch initializeConnectionLatch() {
if (maxConnections==-1) return null; //这个是无限的链接数量
if (connectionLimitLatch==null) {
connectionLimitLatch = new LimitLatch(getMaxConnections()); //根据最大的链接数量来创建
}
return connectionLimitLatch;
}
我们知道在Connector的配置中可以设置最大的链接数量,其实这里也就是通过这个数量来构建LimitLatch对象的。。。
嗯,Tomcat是从哪里获取连接呢,这个就要从Accecptor看了。。。
public void run() {
int errorDelay = 0;
// Loop until we receive a shutdown command
while (running) {
// Loop if endpoint is paused
while (paused && running) { //如果暂停了
state = AcceptorState.PAUSED; //更改当前acceptor的状态
try {
Thread.sleep(50);
} catch (InterruptedException e) {
// Ignore
}
}
if (!running) { //如果没有运行,那么这里直接跳过
break;
}
state = AcceptorState.RUNNING; //设置当前acceptor的状态是running
try {
//if we have reached max connections, wait
countUpOrAwaitConnection(); //增减闭锁的计数,如果connection数量已经达到了最大,那么暂停一下,这里用到的是connectionLimitLatch锁,可以理解为一个闭锁吧
SocketChannel socket = null;
try {
// Accept the next incoming connection from the server
// socket
socket = serverSock.accept(); //调用serversocket的accept方法
} catch (IOException ioe) {
//we didn't get a socket
countDownConnection(); //出了异常,并没有获取链接,那么这里减少闭锁的计数
// Introduce delay if necessary
errorDelay = handleExceptionWithDelay(errorDelay);
// re-throw
throw ioe;
}
// Successful accept, reset the error delay
errorDelay = 0;
// setSocketOptions() will add channel to the poller
// if successful
if (running && !paused) {
if (!setSocketOptions(socket)) { //这里主要是将socket加入到poller对象上面去,而且还要设置参数
countDownConnection(); //加入poller对象失败了的话,那么将闭锁的计数减低
closeSocket(socket); //关闭刚刚 创建的这个socket
}
} else {
countDownConnection();
closeSocket(socket);
}
} catch (SocketTimeoutException sx) {
// Ignore: Normal condition
} catch (IOException x) {
if (running) {
log.error(sm.getString("endpoint.accept.fail"), x);
}
} catch (OutOfMemoryError oom) {
try {
oomParachuteData = null;
releaseCaches();
log.error("", oom);
}catch ( Throwable oomt ) {
try {
try {
System.err.println(oomParachuteMsg);
oomt.printStackTrace();
}catch (Throwable letsHopeWeDontGetHere){
ExceptionUtils.handleThrowable(letsHopeWeDontGetHere);
}
}catch (Throwable letsHopeWeDontGetHere){
ExceptionUtils.handleThrowable(letsHopeWeDontGetHere);
}
}
} catch (Throwable t) {
ExceptionUtils.handleThrowable(t);
log.error(sm.getString("endpoint.accept.fail"), t);
}
}
state = AcceptorState.ENDED; //设置acceptor的状态为ended
}
这里读一下Accecptor,的run方法可以知道,每次在调用serverSocketChannel的accept方法之前都会调用countUpOrAwaitConnection方法来增加闭锁的计数,如果有问题,那就会调用countDownConnection方法来降低闭锁的计数。。。
其实这里通过这两个方法就知道他们是干嘛的了,先来看看countUpOrAwaitConnection吧:
//这里用于增加闭锁的计数
protected void countUpOrAwaitConnection() throws InterruptedException {
if (maxConnections==-1) return;
LimitLatch latch = connectionLimitLatch;
if (latch!=null) latch.countUpOrAwait(); //增加闭锁的counter
}
没啥意思吧,就是调用刚刚创建的闭锁的countUpOrAwait方法,接下来来看看countDownConnection方法吧:
//用于减少闭锁的计数
protected long countDownConnection() {
if (maxConnections==-1) return -1;
LimitLatch latch = connectionLimitLatch;
if (latch!=null) {
long result = latch.countDown();
if (result<0) {
getLog().warn("Incorrect connection count, multiple socket.close called on the same socket." );
}
return result;
} else return -1;
}
这个也没啥意思吧。。。就是调用闭锁的countDown方法。。。
嗯,到这里整个Tomcat如何控制连接的数量就算是比较清楚了吧。。。
最后,我们知道是通过调用endpoint的cancelledKey方法来关闭一个连接的,来看看它的实现吧:
//取消一个注册
public void cancelledKey(SelectionKey key, SocketStatus status) {
try {
if ( key == null ) return;//nothing to do
KeyAttachment ka = (KeyAttachment) key.attachment();
if (ka != null && ka.isComet() && status != null) {
ka.setComet(false);//to avoid a loop
if (status == SocketStatus.TIMEOUT ) {
if (processSocket(ka.getChannel(), status, true)) {
return; // don't close on comet timeout
}
} else {
// Don't dispatch if the lines below are canceling the key
processSocket(ka.getChannel(), status, false);
}
}
key.attach(null); //将附件设置为null
if (ka!=null) handler.release(ka); //可以取消这个attachment了
else handler.release((SocketChannel)key.channel());
if (key.isValid()) key.cancel(); //取消key
if (key.channel().isOpen()) { //如果channel还是打开的,那么需要关闭channel
try {
key.channel().close();
} catch (Exception e) {
if (log.isDebugEnabled()) {
log.debug(sm.getString(
"endpoint.debug.channelCloseFail"), e);
}
}
}
try {
if (ka!=null) {
ka.getSocket().close(true); //关闭sockt
}
} catch (Exception e){
if (log.isDebugEnabled()) {
log.debug(sm.getString(
"endpoint.debug.socketCloseFail"), e);
}
}
try {
if (ka != null && ka.getSendfileData() != null
&& ka.getSendfileData().fchannel != null
&& ka.getSendfileData().fchannel.isOpen()) {
ka.getSendfileData().fchannel.close();
}
} catch (Exception ignore) {
}
if (ka!=null) {
ka.reset();
countDownConnection(); //降低用于维护连接数量的闭锁
}
} catch (Throwable e) {
ExceptionUtils.handleThrowable(e);
if (log.isDebugEnabled()) log.error("",e);
}
}
这里可以看到调用了countDownConnection方法来降低闭锁的计数。。
最后总结:Tomcat通过在acceptor中对闭锁的获取来控制总连接的数量,如果连接数量达到了最大的限制,那么将会被阻塞。。直到有连接关闭为止。。。这样acceptor的线程就又被唤醒了。。。