提起ReentrantLock,想必大家最熟悉的就是这lock()
、unlock()
这两个方法了,那今天就从这入手吧!
一、类结构
三个内部类:Sync
、FairSync
、NonfairSync
Sync
: 同步器基类
FairSync
: 实现公平锁的同步器
NonfairSync
: 实现非公平锁的同步器
Sync
继承 AbstractQueuedSynchronizer
;FairSync
、NonfairSync
继承Sync
。
二、lock()
流程(以公平锁为例)
ReentrantLock lock = new ReentrantLock(true);
lock.lock();
当调用lock
方法时,当前线程尝试获取锁,下面来看下具体获取过程。
ReentrantLock.FairSync.lock()
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
//获取锁
acquire(1);
}
...
}
调用父类的父类的acquire
方法
AbstractQueuedSynchronizer.acquire()
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
这个acquire
方法还是有毫复杂的,流程如下:
1、尝试获取锁(tryAcquire
)
2、若尝试获取失败,则加入等待队列,并中断自己
3、若尝试获取成功,则占有锁
尝试获取锁
ReentrantLock.FairSync.tryAcquire()
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
//c:当前锁是否已被线程拥有
int c = getState();
if (c == 0) {
//1.当前锁未被拥有
//2.当前线程是否是等待队列的第一个,很公平
//3.CAS方式设置state值
//4.已独占的方式获取当前锁
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//1.当前锁已被拥有
//2.重入锁
//3.设置state值
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
加入等待队列
AbstractQueuedSynchronizer
使用双向链表来管理等待队列。结构如下:
假如threadA获取了锁,此时threadB尝试获取锁失败,则threadB加入等待队列;
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
1、新node假如队尾(有尾节点)
AbstractQueuedSynchronizer.addWaiter()
private Node addWaiter(Node mode) {
//model表示独占还是共享模式
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
//如果有尾节点,将待插入的节点插入到尾节点之后
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//将node节点置为尾节点
enq(node);
return node;
}
2、自旋尝试获取锁
threadB被加入等待队列后,不断循环尝试获取锁。
AbstractQueuedSynchronizer.acquireQueued()
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//尝试获取失败是否需要阻塞当前线程
if (shouldParkAfterFailedAcquire(p, node) &&
//阻塞当前线程
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
acquireQueued.shouldParkAfterFailedAcquire()
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
当线程尝试获取锁失败后,会调用shouldParkAfterFailedAcquire
方法要判断是否阻塞自己。AQS(AbstractQueuedSynchronizer)
使用的是CLH队列,不断的轮询前驱节点的状态,根据前驱节点的状态来决定后面的工作。
每一个节点都有使用waitStatus
来表示自己的状态;具体值有:
① 1(CANCELLED
): 线程取消了竞争锁
② -1 (SIGNAL
):当前线程的后继节点需要被唤醒(unpark
)
③ -2 、-3(下篇文章再细说)
④ 0 :默认值
–> 如果前驱节点的状态为-1,则阻塞当前节点;
–> 如果前驱节点状态为1,则循环删除前驱节点,知道前驱节点的waitStatus<=0
–> 如果前驱节点的状态为其他值,则讲前驱节点的waitStatus
赋值为-1
注:对于
waitStatus
值代表的含义是什么?为什么这样设计?我也挺迷茫的,在后几篇文章中我会尽力的去理解
下面来看看阻塞线程的方法parkAndCheckInterrupt
:
AbstractQueuedSynchronizer.parkAndCheckInterrupt()
private final boolean parkAndCheckInterrupt() {
//阻塞当前线程
LockSupport.park(this);
//返回中断状态,并清空
return Thread.interrupted();
}
LockSupport.park/unpark
和Object
类中的wait/notify/notifyAll
方法类似,都有阻塞线程的作用;两者之后不能互相唤醒,LockSupport.unpark
方法可以指定唤醒某一个线程,能够响应中断,但不会抛出中断异常。
最终threadB在执行完LockSupport.park(this)
后,就阻塞了!
三、unlock()
流程
ReentrantLock.unlock()
public void unlock() {
sync.release(1);
}
AbstractQueuedSynchronizer.release()
//挺简单的
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
ReentrantLock.tryRelease()
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
//如果当前线程不是锁拥有者,抛出异常
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
//是否完全释放锁,
//如果不是,则还可以重入
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
如果head指向的头结点不为null
,且waitStatus !=0
,则唤醒后继结点;
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
//从队未往前查找,找到waitStatus<=0的所有节点中排在最前面的
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
唤醒线程以后,被唤醒的线程将从以下代码中继续往前走:
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this); // 刚刚线程被挂起在这里了
return Thread.interrupted();
}
// 又回到这个方法了:acquireQueued(final Node node, int arg),这个时候,node的前驱是head了
三、未解之谜
1、waitStatus
值的具体含义?
2、lock、unlock
和中断的关系?
…