Dataset---Video/Motion Segmentation Dataset and Benchmark

本文介绍了多个用于视频分割任务的数据集,包括BerkeleyVideoSegmentationDataset(BVSD)、Freiburg-BerkeleyMotionSegmentationDataset(FBMS-59)及VideoSegmentationBenchmark(VSB100)等。这些数据集对于训练和评估视频分割算法至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1: Berkeley Video Segmentation Dataset (BVSD)

Dataset train

Dataset test

 

2: Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59)

T. Brox, J. Malik
Object segmentation by long term analysis of point trajectories,
European Conference on Computer Vision (ECCV), September 2010.

 

P. Ochs, J. Malik, T. Brox
Segmentation of moving objects by long term video analysis,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

 

BMS-26 dataset and evaluation software (260MB)

FBMS-59 training set (504MB)

FBMS-59 test set (386MB)

FBMS-59 evaluation software

 

3: Video Segmentation Benchmark (VSB100)

Training set(40 Videos, external link to Berkeley server)

Test set(60 Videos, external link to Berkeley server)

Local links for Train and Test set:

Train set
Test set

 

4: VSB100: A Unified Video Segmentation Benchmark

 

Benchmark code

 

 

 

 

 

 

 

 

> data=/home/wuwei/dataset/args.yaml \ > model=yolov8n.pt \ > epochs=100 \ > imgsz=640 \ Traceback (most recent call last): File "/home/wuwei/anaconda3/envs/yolov8_new/bin/yolo", line 8, in <module> sys.exit(entrypoint()) File "/home/wuwei/anaconda3/envs/yolov8_new/lib/python3.10/site-packages/ultralytics/cfg/__init__.py", line 907, in entrypoint check_dict_alignment(full_args_dict, {a: ""}) File "/home/wuwei/anaconda3/envs/yolov8_new/lib/python3.10/site-packages/ultralytics/cfg/__init__.py", line 498, in check_dict_alignment raise SyntaxError(string + CLI_HELP_MSG) from e SyntaxError: ' ' is not a valid YOLO argument. Arguments received: ['yolo', 'detect', 'train', 'data=/home/wuwei/dataset/args.yaml', 'model=yolov8n.pt', 'epochs=100', 'imgsz=640', ' ']. Ultralytics 'yolo' commands use the following syntax: yolo TASK MODE ARGS Where TASK (optional) is one of ['obb', 'pose', 'detect', 'segment', 'classify'] MODE (required) is one of ['val', 'export', 'train', 'track', 'benchmark', 'predict'] ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' 1. Train a detection model for 10 epochs with an initial learning_rate of 0.01 yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01 2. Predict a YouTube video using a pretrained segmentation model at image size 320: yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 3. Val a pretrained detection model at batch-size 1 and image size 640: yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640 4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required) yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128 5. Ultralytics solutions usage yolo solutions count or in ['crop', 'blur', 'workout', 'heatmap', 'isegment', 'visioneye', 'speed', 'queue', 'analytics', 'inference', 'trackzone'] source="path/to/video.mp4" 6. Run special commands: yolo help yolo checks yolo version yolo settings yolo copy-cfg yolo cfg yolo solutions help Docs: https://docs.ultralytics.com Solutions: https://docs.ultralytics.com/solutions/ Community: https://community.ultralytics.com GitHub: https://github.com/ultralytics/ultralytics
最新发布
07-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值